Update GADC

This commit is contained in:
inmarket 2014-03-24 10:08:15 +10:00
parent c7566aa553
commit c354639f7b
5 changed files with 328 additions and 461 deletions

View File

@ -167,10 +167,19 @@ int main(void) {
gtimerStart(&lsTimer, LowSpeedTimer, ghText, TRUE, MY_LS_DELAY);
#endif
// Allocate buffers for the high speed GADC device - 4 x 128 byte buffers.
// You may need to increase this for slower cpu's.
// You may be able to decrease this for low latency operating systems.
gfxBufferAlloc(4, 128);
/**
* Allocate buffers for the high speed GADC device - eg. 4 x 128 byte buffers.
* You may need to increase this for slower cpu's.
* You may be able to decrease this for low latency operating systems.
* 10 x 128 seems to work on the really slow Olimex SAM7EX256 board (display speed limitation)
* If your oscilloscope display stops but the low speed reading keep going then it is likely that
* your high speed timer has stalled due to running out of free buffers. Increase the number
* of buffers..
* If you make the buffers too large with a slow sample rate you may not allow enough time for all
* the low speed items to occur in which case your memory will fill up with low speed requests until
* you run out of memory.
*/
gfxBufferAlloc(10, 128);
/* Set up the scope window in the top right on the screen */
{

View File

@ -16,13 +16,12 @@
#include "src/gadc/driver.h"
static GDataBuffer *pData;
static size_t bytesperconversion;
static uint32_t nextfreq;
// Forward references to ISR routines
static void ISR_CompleteI(ADCDriver *adcp, adcsample_t *buffer, size_t n);
static void ISR_ErrorI(ADCDriver *adcp, adcerror_t err);
static ADCConversionGroup acg = {
FALSE, // circular
1, // num_channels
@ -37,82 +36,53 @@ static void ISR_CompleteI(ADCDriver *adcp, adcsample_t *buffer, size_t n) {
(void) adcp;
(void) buffer;
if (pData) {
// A set of timer base conversions is complete
pData->len += n * bytesperconversion;
// Are we finished yet?
// In ChibiOS we (may) get a half-buffer complete. In this situation the conversions
// are really not complete and so we just wait for the next lot of data.
if (pData->len + bytesperconversion > pData->size)
gadcDataReadyI();
} else {
// A single non-timer conversion is complete
gadcDataReadyI();
}
gadcGotDataI(n);
}
static void ISR_ErrorI(ADCDriver *adcp, adcerror_t err) {
(void) adcp;
(void) err;
gadcDataFailI();
gadcGotDataI(0);
}
void gadc_lld_init(void) {
adcStart(&ADCD1, 0);
}
void gadc_lld_start_timer(GadcLldTimerData *pgtd) {
int phys;
size_t gadc_lld_samplesperconversion(uint32_t physdev) {
size_t samples;
/* Calculate the bytes per conversion from physdev */
/* The AT91SAM7 has AD0..7 - physdev is a bitmap of those channels */
phys = pgtd->physdev;
for(bytesperconversion = 0; phys; phys >>= 1)
if (phys & 0x01)
bytesperconversion++;
bytesperconversion *= (gfxSampleFormatBits(GADC_SAMPLE_FORMAT)+7)/8;
/**
* The AT91SAM7 ADC driver supports triggering the ADC using a timer without having to implement
* an interrupt handler for the timer. The driver also initialises the timer correctly for us.
* Because we aren't trapping the interrupt ourselves we can't increment GADC_Timer_Missed if an
* interrupt is missed.
*/
acg.frequency = pgtd->frequency;
for(samples = 0; physdev; physdev >>= 1)
if (physdev & 0x01)
samples++;
return samples;
}
void gadc_lld_stop_timer(GadcLldTimerData *pgtd) {
(void) pgtd;
if ((acg.trigger & ~ADC_TRIGGER_SOFTWARE) == ADC_TRIGGER_TIMER)
adcStop(&ADCD1);
void gadc_lld_start_timerI(uint32_t frequency) {
// Nothing to do here - the AT91SAM7 adc driver uses an internal timer
// which is set up when the job is started. We save this here just to
// indicate the timer should be re-initialised on the next timer job
nextfreq = frequency;
}
void gadc_lld_adc_timerI(GadcLldTimerData *pgtd) {
/**
* We don't need to calculate num_channels because the AT91SAM7 ADC does this for us.
*/
acg.channelselects = pgtd->physdev;
acg.trigger = pgtd->now ? (ADC_TRIGGER_TIMER|ADC_TRIGGER_SOFTWARE) : ADC_TRIGGER_TIMER;
pData = pgtd->pdata;
adcStartConversionI(&ADCD1, &acg, (adcsample_t *)(pgtd->pdata+1), pData->size/bytesperconversion);
/* Next time assume the same (still running) timer */
acg.frequency = 0;
void gadc_lld_stop_timerI(void) {
// Nothing to do here. The AT91SAM7 adc driver automatically turns off timer interrupts
// on completion of the job
}
void gadc_lld_adc_nontimerI(GadcLldNonTimerData *pgntd) {
/**
* We don't need to calculate num_channels because the AT91SAM7 ADC does this for us.
*/
acg.channelselects = pgntd->physdev;
void gadc_lld_timerjobI(GadcTimerJob *pj) {
acg.channelselects = pj->physdev;
acg.trigger = ADC_TRIGGER_TIMER;
acg.frequency = nextfreq;
nextfreq = 0; // Next job use the same timer
adcStartConversionI(&ADCD1, &acg, pj->buffer, pj->todo);
}
void gadc_lld_nontimerjobI(GadcNonTimerJob *pj) {
acg.channelselects = pj->physdev;
acg.trigger = ADC_TRIGGER_SOFTWARE;
pData = 0;
adcStartConversionI(&ADCD1, &acg, pgntd->buffer, 1);
adcStartConversionI(&ADCD1, &acg, pj->buffer, 1);
}
#endif /* GFX_USE_GADC */

View File

@ -27,38 +27,27 @@
/**
* @brief The structure passed to start a timer conversion
* @note We use the structure instead of parameters purely to save
* interrupt stack space which is very limited in some platforms.
* @{
*/
typedef struct GadcLldTimerData_t {
uint32_t physdev; /* @< Which physical ADC devices/channels to use. Filled in by High Level Code */
uint32_t frequency; /* @< The conversion frequency. Filled in by High Level Code */
GDataBuffer *pdata; /* @< The buffer to put the ADC samples into. */
bool_t now; /* @< Trigger the first conversion now rather than waiting for the first timer interrupt (if possible) */
} GadcLldTimerData;
typedef struct GadcTimerJob_t {
uint32_t physdev; // @< The physical device/s. The exact meaning of physdev is hardware dependent.
uint32_t frequency; // @< The frequency to sample
adcsample_t *buffer; // @< Where to put the samples
size_t todo; // @< How many conversions to do
size_t done; // @< How many conversions have already been done
} GadcTimerJob;
/* @} */
/**
* @brief The structure passed to start a non-timer conversion
* @note We use the structure instead of parameters purely to save
* interrupt stack space which is very limited in some platforms.
* @brief The structure passed to do a single conversion
* @{
*/
typedef struct GadcLldNonTimerData_t {
uint32_t physdev; /* @< A value passed to describe which physical ADC devices/channels to use. */
adcsample_t *buffer; /* @< The static buffer to put the ADC samples into. */
} GadcLldNonTimerData;
typedef struct GadcNonTimerJob_t {
uint32_t physdev; // @< The physical device/s. The exact meaning of physdev is hardware dependent.
adcsample_t *buffer; // @< Where to put the samples.
} GadcNonTimerJob;
/* @} */
/**
* @brief This can be incremented by the low level driver if a timer interrupt is missed.
* @details Defined in the high level GADC code.
*
* @notapi
*/
extern volatile bool_t GADC_Timer_Missed;
/*===========================================================================*/
/* External declarations. */
/*===========================================================================*/
@ -75,14 +64,15 @@ extern "C" {
* @{
*/
/**
* @brief The last conversion requested is now complete
* @brief Indicate that some data has been placed into the buffer for the current job
*
* @param[in] n The number of samples placed in the buffer
*
* @note Calling this with n = 0 causes the current job to be terminated early or aborted.
* It can be called in this mode on an ADC conversion error. Any job will then be
* restarted by the high level code as appropriate.
*/
void gadcDataReadyI(void);
/**
* @brief The last conversion requested failed
*/
void gadcDataFailI(void);
void gadcGotDataI(size_t n);
/**
* @}
*/
@ -95,71 +85,57 @@ extern "C" {
void gadc_lld_init(void);
/**
* @brief Start a periodic timer for high frequency conversions.
* @brief Return the number of samples per conversion
*
* @param[in] pgtd The structure containing the sample frequency and physical device to use.
*
* @note The exact meaning of physdev is hardware dependent. It describes the channels
* the will be used later on when a "timer" conversion is actually scheduled.
* @note It is assumed that the timer is capable of free-running even when the ADC
* is stopped or doing something else.
* @details When a timer interrupt occurs a conversion should start if there is a "timer" conversion
* active.
* @note Timer interrupts occurring before @p gadc_lld_adc_timerI() has been called,
* if @p gadc_lld_adc_timerI() has been called quick enough, or while
* a non-timer conversion is active should be ignored other than (optionally) incrementing
* the GADC_Timer_Missed variable.
* @note The pdata and now members of the pgtd structure are now yet valid.
* @param[in] physdev The hardware dependent physical device descriptor
*
* @api
*/
void gadc_lld_start_timer(GadcLldTimerData *pgtd);
size_t gadc_lld_samplesperconversion(uint32_t physdev);
/**
* @brief Start a periodic timer for high frequency conversions.
*
* @param[in] freq The frequency for the timer
*
* @note This will only be called if the timer is currently stopped.
*
* @api
* @iclass
*/
void gadc_lld_start_timerI(uint32_t freq);
/**
* @brief Stop the periodic timer for high frequency conversions.
* @details Also stops any current "timer" conversion (but not a current "non-timer" conversion).
*
* @param[in] pgtd The structure containing the sample frequency and physical device to use.
* @note This will only be called if the timer is currently running and all timer jobs
* have been completed/aborted.
*
* @note After this function returns there should be no more calls to @p gadcDataReadyI()
* or @p gadcDataFailI() in relation to timer conversions.
* @api
*/
void gadc_lld_stop_timer(GadcLldTimerData *pgtd);
/**
* @brief Start a set of "timer" conversions.
* @details Starts a series of conversions triggered by the timer.
*
* @param[in] pgtd Contains the parameters for the timer conversion.
*
* @note The exact meaning of physdev is hardware dependent. It is likely described in the
* drivers gadc_lld_config.h
* @note The driver should call @p gadcDataReadyI() when it completes the operation
* or @p gadcDataFailI() on an error.
* @note The high level code ensures that this is not called while a non-timer conversion is in
* progress
*
* @iclass
*/
void gadc_lld_adc_timerI(GadcLldTimerData *pgtd);
void gadc_lld_stop_timerI(void);
/**
* @brief Start a "non-timer" conversion.
* @details Starts a single conversion now.
* @brief Start a set of high frequency conversions.
*
* @param[in] pgntd Contains the parameters for the non-timer conversion.
*
* @note The exact meaning of physdev is hardware dependent. It is likely described in the
* drivers gadc_lld_config.h
* @note The driver should call @p gadcDataReadyI() when it completes the operation
* or @p gadcDataFailI() on an error.
* @note The high level code ensures that this is not called while a timer conversion is in
* progress
* @note This will only be called if the timer is currently running and the ADC should be ready for
* a new job.
*
* @api
* @iclass
*/
void gadc_lld_adc_nontimerI(GadcLldNonTimerData *pgntd);
void gadc_lld_timerjobI(GadcTimerJob *pjob);
/**
* @brief Start a non-timer conversion.
*
* @note This will only be called if the ADC should be ready for a new job.
*
* @api
* @iclass
*/
void gadc_lld_nontimerjobI(GadcNonTimerJob *pjob);
#ifdef __cplusplus
}

View File

@ -23,206 +23,151 @@
#error "GADC: GADC_MAX_HIGH_SPEED_SAMPLERATE has been set too high. It must be less than half the maximum CPU rate"
#endif
#define GADC_MAX_LOWSPEED_DEVICES ((GADC_MAX_SAMPLE_FREQUENCY/GADC_MAX_HIGH_SPEED_SAMPLERATE)-1)
#if GADC_MAX_LOWSPEED_DEVICES > 4
#undef GADC_MAX_LOWSPEED_DEVICES
#define GADC_MAX_LOWSPEED_DEVICES 4
#endif
#define GADC_HSADC_GTIMER 0x8000
#define GADC_ADC_RUNNING 0x4000
#define GADC_HSADC_CONVERTION 0x2000
volatile bool_t GADC_Timer_Missed;
static bool_t gadcRunning;
static gfxSem LowSpeedSlotSem;
static gfxMutex LowSpeedMutex;
static GTimer LowSpeedGTimer;
static gfxQueueGSync HighSpeedBuffers;
typedef struct NonTimerData_t {
gfxQueueGSyncItem next;
GADCCallbackFunction callback;
union {
void *param;
gfxSem sigdone;
};
GadcNonTimerJob job;
} NonTimerData;
static volatile uint16_t hsFlags;
static size_t hsBytesPerConv;
static GadcTimerJob hsJob;
static GDataBuffer *hsData;
static gfxQueueGSync hsListDone;
static GADCISRCallbackFunction hsISRcallback;
#if GFX_USE_GEVENT
static GTimer HighSpeedGTimer;
static GTimer hsGTimer;
#endif
static GTimer lsGTimer;
static gfxQueueGSync lsListToDo;
static gfxQueueGSync lsListDone;
static NonTimerData *lsData;
#define GADC_FLG_ISACTIVE 0x0001
#define GADC_FLG_ISDONE 0x0002
#define GADC_FLG_ERROR 0x0004
#define GADC_FLG_GTIMER 0x0008
#define GADC_FLG_STALLED 0x0010
void gadcGotDataI(size_t n) {
if ((hsFlags & GADC_HSADC_CONVERTION)) {
static struct hsdev {
// Our status flags
uint16_t flags;
// A set of timer conversions is done - add them
hsJob.done += n;
// Other stuff we need to track progress and for signaling
GadcLldTimerData lld;
uint16_t eventflags;
GADCISRCallbackFunction isrfn;
} hs;
static struct lsdev {
// Our status flags
uint16_t flags;
// What we started with
GadcLldNonTimerData lld;
GADCCallbackFunction fn;
void *param;
} ls[GADC_MAX_LOWSPEED_DEVICES];
static struct lsdev *curlsdev;
/* Find the next conversion to activate */
static inline void FindNextConversionI(void) {
if (curlsdev) {
/**
* Now we have done a low speed conversion - start looking for the next conversion
* We only look forward to ensure we get a high speed conversion at least once
* every GADC_MAX_LOWSPEED_DEVICES conversions.
*/
curlsdev++;
} else {
/* Now we have done a high speed conversion - start looking for low speed conversions */
curlsdev = ls;
}
/**
* Look for the next thing to do.
*/
gadcRunning = TRUE;
for(; curlsdev < &ls[GADC_MAX_LOWSPEED_DEVICES]; curlsdev++) {
if ((curlsdev->flags & (GADC_FLG_ISACTIVE|GADC_FLG_ISDONE)) == GADC_FLG_ISACTIVE) {
gadc_lld_adc_nontimerI(&curlsdev->lld);
return;
}
}
curlsdev = 0;
/* No more low speed devices - do a high speed conversion */
if (hs.flags & GADC_FLG_ISACTIVE) {
hs.lld.pdata = gfxBufferGetI();
if (hs.lld.pdata) {
hs.lld.now = GADC_Timer_Missed || (hs.flags & GADC_FLG_STALLED);
hs.flags &= ~GADC_FLG_STALLED;
GADC_Timer_Missed = 0;
gadc_lld_adc_timerI(&hs.lld);
return;
}
// Oops - no free buffers - mark stalled and go back to low speed devices
hs.flags |= GADC_FLG_STALLED;
hs.eventflags &= ~GADC_HSADC_RUNNING;
for(curlsdev = ls; curlsdev < &ls[GADC_MAX_LOWSPEED_DEVICES]; curlsdev++) {
if ((curlsdev->flags & (GADC_FLG_ISACTIVE|GADC_FLG_ISDONE)) == GADC_FLG_ISACTIVE) {
gadc_lld_adc_nontimerI(&curlsdev->lld);
return;
}
}
curlsdev = 0;
}
/* Nothing more to do */
gadcRunning = FALSE;
}
void gadcDataReadyI(void) {
if (curlsdev) {
/* This interrupt must be in relation to the low speed device */
if (curlsdev->flags & GADC_FLG_ISACTIVE) {
curlsdev->flags |= GADC_FLG_ISDONE;
gtimerJabI(&LowSpeedGTimer);
}
#if GFX_USE_OS_CHIBIOS && CHIBIOS_ADC_ISR_FULL_CODE_BUG
/**
* Oops - We have just finished a low speed conversion but a bug prevents us
* restarting the ADC here. Other code will restart it in the thread based
* ADC handler.
*/
gadcRunning = FALSE;
// Are we finished yet? (or driver signalled complete now)
if (n && hsJob.done < hsJob.todo)
return;
// Clear event flags we might set
hsFlags &= ~(GADC_HSADC_GOTBUFFER|GADC_HSADC_STALL);
// Is there any data in it
if (!hsJob.done) {
// Oops - no data in this buffer. Just return it to the free-list
gfxBufferReleaseI(hsData);
goto starttimerjob; // Restart the timer job
}
// Save the buffer on the hsListDone list
hsData->len = hsJob.done * hsBytesPerConv;
gfxQueueGSyncPutI(&hsListDone, (gfxQueueGSyncItem *)hsData);
hsFlags |= GADC_HSADC_GOTBUFFER;
/* Signal a buffer completion */
if (hsISRcallback)
hsISRcallback();
#if GFX_USE_GEVENT
if (hsFlags & GADC_HSADC_GTIMER)
gtimerJabI(&hsGTimer);
#endif
} else {
/* This interrupt must be in relation to the high speed device */
// Stop if we have been told to
if (!(hsFlags & GADC_HSADC_RUNNING)) {
gadc_lld_stop_timerI();
if (hs.flags & GADC_FLG_ISACTIVE) {
if (hs.lld.pdata->len) {
/* Save the current buffer on the HighSpeedBuffers */
gfxQueueGSyncPutI(&HighSpeedBuffers, (gfxQueueGSyncItem *)hs.lld.pdata);
hs.lld.pdata = 0;
// Get the next free buffer
} else if (!(hsData = gfxBufferGetI())) {
/* Save the details */
hs.eventflags = GADC_HSADC_RUNNING|GADC_HSADC_GOTBUFFER;
if (GADC_Timer_Missed)
hs.eventflags |= GADC_HSADC_LOSTEVENT;
if (hs.flags & GADC_FLG_STALLED)
hs.eventflags |= GADC_HSADC_STALL;
// Oops - no free buffers. Stall
hsFlags &= ~GADC_HSADC_RUNNING;
hsFlags |= GADC_HSADC_STALL;
gadc_lld_stop_timerI();
/* Our signalling mechanisms */
if (hs.isrfn)
hs.isrfn();
// Prepare the next job
} else {
#if GFX_USE_GEVENT
if (hs.flags & GADC_FLG_GTIMER)
gtimerJabI(&HighSpeedGTimer);
#endif
} else {
// Oops - no data in this buffer. Just return it to the free-list
gfxBufferRelease(hs.lld.pdata);
hs.lld.pdata = 0;
}
// Return this new job
#if GFX_USE_OS_CHIBIOS
// ChibiOS api bug - samples must be even
hsJob.todo = (hsData->size / hsBytesPerConv) & ~1;
#else
hsJob.todo = hsData->size / hsBytesPerConv;
#endif
hsJob.done = 0;
hsJob.buffer = (adcsample_t *)(hsData+1);
}
}
/**
* Look for the next thing to do.
*/
FindNextConversionI();
}
void gadcDataFailI(void) {
if (curlsdev) {
if ((curlsdev->flags & (GADC_FLG_ISACTIVE|GADC_FLG_ISDONE)) == GADC_FLG_ISACTIVE)
/* Mark the error then try to repeat it */
curlsdev->flags |= GADC_FLG_ERROR;
#if GFX_USE_OS_CHIBIOS && CHIBIOS_ADC_ISR_FULL_CODE_BUG
/**
* Oops - We have just finished a low speed conversion but a bug prevents us
* restarting the ADC here. Other code will restart it in the thread based
* ADC handler.
*/
gadcRunning = FALSE;
gtimerJabI(&LowSpeedGTimer);
return;
#endif
// Start a job preferring a non-timer job
if ((lsData = (NonTimerData *)gfxQueueGSyncGetI(&lsListToDo))) {
hsFlags &= ~GADC_HSADC_CONVERTION;
gadc_lld_nontimerjobI(&lsData->job);
} else if ((hsFlags & GADC_HSADC_RUNNING)) {
hsFlags |= GADC_HSADC_CONVERTION;
gadc_lld_timerjobI(&hsJob);
} else
hsFlags &= ~GADC_ADC_RUNNING;
} else {
if (hs.flags & GADC_FLG_ISACTIVE)
/* Mark the error and then try to repeat it */
hs.flags |= GADC_FLG_ERROR;
}
/* Start the next conversion */
FindNextConversionI();
// Did it fail
if (!n) {
// Push it back on the head of the queue - it didn't actually get done
gfxQueueGSyncPushI(&lsListToDo, (gfxQueueGSyncItem *)lsData);
lsData = 0;
goto starttimerjob;
}
// A non-timer job completed - signal
if (lsData->callback) {
// Put it on the completed list and signal the timer to do the call-backs
gfxQueueGSyncPutI(&lsListDone, (gfxQueueGSyncItem *)lsData);
gtimerJabI(&lsGTimer);
} else {
// Signal the thread directly
gfxSemSignalI(&lsData->sigdone);
}
lsData = 0;
// Start a job preferring a timer job
starttimerjob:
if ((hsFlags & GADC_HSADC_RUNNING)) {
hsFlags |= GADC_HSADC_CONVERTION;
gadc_lld_timerjobI(&hsJob);
} else if ((lsData = (NonTimerData *)gfxQueueGSyncGetI(&lsListToDo))) {
hsFlags &= ~GADC_HSADC_CONVERTION;
gadc_lld_nontimerjobI(&lsData->job);
} else
hsFlags &= ~GADC_ADC_RUNNING;
}
}
/* Our module initialiser */
void _gadcInit(void)
{
gadc_lld_init();
gfxQueueGSyncInit(&HighSpeedBuffers);
gfxSemInit(&LowSpeedSlotSem, GADC_MAX_LOWSPEED_DEVICES, GADC_MAX_LOWSPEED_DEVICES);
gfxMutexInit(&LowSpeedMutex);
gtimerInit(&LowSpeedGTimer);
gfxQueueGSyncInit(&hsListDone);
#if GFX_USE_GEVENT
gtimerInit(&HighSpeedGTimer);
gtimerInit(&hsGTimer);
#endif
gtimerInit(&lsGTimer);
gfxQueueGSyncInit(&lsListToDo);
gfxQueueGSyncInit(&lsListDone);
}
void _gadcDeinit(void)
@ -230,27 +175,13 @@ void _gadcDeinit(void)
/* commented stuff is ToDo */
// gadc_lld_deinit();
gfxQueueGSyncDeinit(&HighSpeedBuffers);
gfxSemDestroy(&LowSpeedSlotSem);
gfxMutexDestroy(&LowSpeedMutex);
gtimerDeinit(&LowSpeedGTimer);
gfxQueueGSyncDeinit(&hsListDone);
#if GFX_USE_GEVENT
gtimerDeinit(&HighSpeedGTimer);
gtimerDeinit(&hsGTimer);
#endif
}
static inline void StartADC(bool_t onNoHS) {
gfxSystemLock();
if (!gadcRunning || (onNoHS && !curlsdev))
FindNextConversionI();
gfxSystemUnlock();
}
static void BSemSignalCallback(adcsample_t *buffer, void *param) {
(void) buffer;
/* Signal the BinarySemaphore parameter */
gfxSemSignal((gfxSem *)param);
gtimerDeinit(&lsGTimer);
gfxQueueGSyncDeinit(&lsListToDo);
gfxQueueGSyncDeinit(&lsListDone);
}
#if GFX_USE_GEVENT
@ -260,7 +191,7 @@ static void BSemSignalCallback(adcsample_t *buffer, void *param) {
GEventADC *pe;
psl = 0;
while ((psl = geventGetSourceListener((GSourceHandle)(&HighSpeedGTimer), psl))) {
while ((psl = geventGetSourceListener((GSourceHandle)(&hsGTimer), psl))) {
if (!(pe = (GEventADC *)geventGetEventBuffer(psl))) {
// This listener is missing - save this.
psl->srcflags |= GADC_HSADC_LOSTEVENT;
@ -268,175 +199,162 @@ static void BSemSignalCallback(adcsample_t *buffer, void *param) {
}
pe->type = GEVENT_ADC;
pe->flags = hs.eventflags | psl->srcflags;
pe->flags = (hsFlags & (GADC_HSADC_RUNNING|GADC_HSADC_GOTBUFFER|GADC_HSADC_STALL)) | psl->srcflags;
psl->srcflags = 0;
geventSendEvent(psl);
}
}
#endif
static void LowSpeedGTimerCallback(void *param) {
(void) param;
GADCCallbackFunction fn;
void *prm;
adcsample_t *buffer;
struct lsdev *p;
#if GFX_USE_OS_CHIBIOS && CHIBIOS_ADC_ISR_FULL_CODE_BUG
/* Ensure the ADC is running if it needs to be - Bugfix HACK */
StartADC(FALSE);
#endif
/**
* Look for completed low speed timers.
* We don't need to take the mutex as we are the only place that things are freed and we
* do that atomically.
*/
for(p=ls; p < &ls[GADC_MAX_LOWSPEED_DEVICES]; p++) {
if ((p->flags & (GADC_FLG_ISACTIVE|GADC_FLG_ISDONE)) == (GADC_FLG_ISACTIVE|GADC_FLG_ISDONE)) {
/* This item is done - perform its callback */
fn = p->fn; // Save the callback details
prm = p->param;
buffer = p->lld.buffer;
p->fn = 0; // Needed to prevent the compiler removing the local variables
p->param = 0; // Needed to prevent the compiler removing the local variables
p->lld.buffer = 0; // Needed to prevent the compiler removing the local variables
p->flags = 0; // The slot is available (indivisible operation)
gfxSemSignal(&LowSpeedSlotSem); // Tell everyone
fn(buffer, prm); // Perform the callback
}
}
}
void gadcHighSpeedInit(uint32_t physdev, uint32_t frequency)
{
gadcHighSpeedStop(); /* This does the init for us */
if ((hsFlags & GADC_HSADC_RUNNING))
gadcHighSpeedStop();
/* Just save the details and reset everything for now */
hs.lld.physdev = physdev;
hs.lld.frequency = frequency;
hs.lld.pdata = 0;
hs.lld.now = FALSE;
hs.isrfn = 0;
hsJob.physdev = physdev;
hsJob.frequency = frequency;
hsISRcallback = 0;
hsBytesPerConv = gadc_lld_samplesperconversion(physdev) * sizeof(adcsample_t);
}
#if GFX_USE_GEVENT
GSourceHandle gadcHighSpeedGetSource(void) {
if (!gtimerIsActive(&HighSpeedGTimer))
gtimerStart(&HighSpeedGTimer, HighSpeedGTimerCallback, 0, TRUE, TIME_INFINITE);
hs.flags |= GADC_FLG_GTIMER;
return (GSourceHandle)&HighSpeedGTimer;
if (!gtimerIsActive(&hsGTimer))
gtimerStart(&hsGTimer, HighSpeedGTimerCallback, 0, TRUE, TIME_INFINITE);
hsFlags |= GADC_HSADC_GTIMER;
return (GSourceHandle)&hsGTimer;
}
#endif
void gadcHighSpeedSetISRCallback(GADCISRCallbackFunction isrfn) {
hs.isrfn = isrfn;
hsISRcallback = isrfn;
}
GDataBuffer *gadcHighSpeedGetData(delaytime_t ms) {
return (GDataBuffer *)gfxQueueGSyncGet(&HighSpeedBuffers, ms);
return (GDataBuffer *)gfxQueueGSyncGet(&hsListDone, ms);
}
GDataBuffer *gadcHighSpeedGetDataI(void) {
return (GDataBuffer *)gfxQueueGSyncGetI(&HighSpeedBuffers);
return (GDataBuffer *)gfxQueueGSyncGetI(&hsListDone);
}
void gadcHighSpeedStart(void) {
/* If its already going we don't need to do anything */
if (hs.flags & GADC_FLG_ISACTIVE)
// Safety first
if (!hsJob.frequency || !hsBytesPerConv)
return;
hs.flags = GADC_FLG_ISACTIVE;
gadc_lld_start_timer(&hs.lld);
StartADC(FALSE);
gfxSystemLock();
if (!(hsFlags & GADC_HSADC_RUNNING)) {
if (!(hsData = gfxBufferGetI())) {
// Oops - no free buffers. Stall
hsFlags |= GADC_HSADC_STALL;
#if GFX_USE_GEVENT
if (hsFlags & GADC_HSADC_GTIMER)
gtimerJabI(&hsGTimer);
#endif
// Prepare the next job
} else {
#if GFX_USE_OS_CHIBIOS
// ChibiOS api bug - samples must be even
hsJob.todo = (hsData->size / hsBytesPerConv) & ~1;
#else
hsJob.todo = hsData->size / hsBytesPerConv;
#endif
hsJob.done = 0;
hsJob.buffer = (adcsample_t *)(hsData+1);
hsFlags |= GADC_HSADC_RUNNING;
// Start the timer
gadc_lld_start_timerI(hsJob.frequency);
// If nothing is running start the job
if (!(hsFlags & GADC_ADC_RUNNING)) {
hsFlags |= (GADC_HSADC_CONVERTION|GADC_ADC_RUNNING);
gadc_lld_timerjobI(&hsJob);
}
}
}
gfxSystemUnlock();
}
void gadcHighSpeedStop(void) {
if (hs.flags & GADC_FLG_ISACTIVE) {
/* No more from us */
hs.flags = 0;
gadc_lld_stop_timer(&hs.lld);
/*
* There might be a buffer still locked up by the driver - if so release it.
*/
if (hs.lld.pdata) {
gfxBufferRelease(hs.lld.pdata);
hs.lld.pdata = 0;
}
// Stop it and wait for completion
hsFlags &= ~GADC_HSADC_RUNNING;
while ((hsFlags & GADC_HSADC_CONVERTION))
gfxYield();
}
/*
* We have to pass TRUE to StartADC() as we might have the ADC marked as active when it isn't
* due to stopping the timer while it was converting.
*/
StartADC(TRUE);
static void LowSpeedGTimerCallback(void *param) {
(void) param;
NonTimerData *pdata;
// Look for completed non-timer jobs and call the call-backs for each
while ((pdata = (NonTimerData *)gfxQueueGSyncGet(&lsListDone, TIME_IMMEDIATE))) {
pdata->callback(pdata->job.buffer, pdata->param);
gfxFree(pdata);
}
}
void gadcLowSpeedGet(uint32_t physdev, adcsample_t *buffer) {
struct lsdev *p;
gfxSem mysem;
NonTimerData ndata;
/* Start the Low Speed Timer */
gfxSemInit(&mysem, 1, 1);
gfxMutexEnter(&LowSpeedMutex);
if (!gtimerIsActive(&LowSpeedGTimer))
gtimerStart(&LowSpeedGTimer, LowSpeedGTimerCallback, 0, TRUE, TIME_INFINITE);
gfxMutexExit(&LowSpeedMutex);
// Prepare the job
gfxSemInit(&ndata.sigdone, 0, 1);
ndata.job.physdev = physdev;
ndata.job.buffer = buffer;
ndata.callback = 0;
while(1) {
/* Wait for an available slot */
gfxSemWait(&LowSpeedSlotSem, TIME_INFINITE);
/* Find a slot */
gfxMutexEnter(&LowSpeedMutex);
for(p = ls; p < &ls[GADC_MAX_LOWSPEED_DEVICES]; p++) {
if (!(p->flags & GADC_FLG_ISACTIVE)) {
p->lld.physdev = physdev;
p->lld.buffer = buffer;
p->fn = BSemSignalCallback;
p->param = &mysem;
p->flags = GADC_FLG_ISACTIVE;
gfxMutexExit(&LowSpeedMutex);
StartADC(FALSE);
gfxSemWait(&mysem, TIME_INFINITE);
return;
}
}
gfxMutexExit(&LowSpeedMutex);
/**
* We should never get here - the count semaphore must be wrong.
* Decrement it and try again.
*/
// Activate it
gfxSystemLock();
if (!(hsFlags & GADC_ADC_RUNNING)) {
// Nothing is running - start the job
lsData = &ndata;
hsFlags |= GADC_ADC_RUNNING;
hsFlags &= ~GADC_HSADC_CONVERTION;
gadc_lld_nontimerjobI(&ndata.job);
} else {
// Just put it on the queue
gfxQueueGSyncPutI(&lsListToDo, (gfxQueueGSyncItem *)&ndata);
}
gfxSystemUnlock();
// Wait for it to complete
gfxSemWait(&ndata.sigdone, TIME_INFINITE);
gfxSemDestroy(&ndata.sigdone);
}
bool_t gadcLowSpeedStart(uint32_t physdev, adcsample_t *buffer, GADCCallbackFunction fn, void *param) {
struct lsdev *p;
NonTimerData *pdata;
/* Start the Low Speed Timer */
gfxMutexEnter(&LowSpeedMutex);
if (!gtimerIsActive(&LowSpeedGTimer))
gtimerStart(&LowSpeedGTimer, LowSpeedGTimerCallback, 0, TRUE, TIME_INFINITE);
if (!gtimerIsActive(&lsGTimer))
gtimerStart(&lsGTimer, LowSpeedGTimerCallback, 0, TRUE, TIME_INFINITE);
/* Find a slot */
for(p = ls; p < &ls[GADC_MAX_LOWSPEED_DEVICES]; p++) {
if (!(p->flags & GADC_FLG_ISACTIVE)) {
/* We know we have a slot - this should never wait anyway */
gfxSemWait(&LowSpeedSlotSem, TIME_IMMEDIATE);
p->lld.physdev = physdev;
p->lld.buffer = buffer;
p->fn = fn;
p->param = param;
p->flags = GADC_FLG_ISACTIVE;
gfxMutexExit(&LowSpeedMutex);
StartADC(FALSE);
return TRUE;
}
// Prepare the job
if (!(pdata = gfxAlloc(sizeof(NonTimerData))))
return FALSE;
pdata->job.physdev = physdev;
pdata->job.buffer = buffer;
pdata->callback = fn;
pdata->param = param;
// Activate it
gfxSystemLock();
if (!(hsFlags & GADC_ADC_RUNNING)) {
// Nothing is running - start the job
lsData = pdata;
hsFlags |= GADC_ADC_RUNNING;
hsFlags &= ~GADC_HSADC_CONVERTION;
gadc_lld_nontimerjobI(&pdata->job);
} else {
// Just put it on the queue
gfxQueueGSyncPutI(&lsListToDo, (gfxQueueGSyncItem *)pdata);
}
gfxMutexExit(&LowSpeedMutex);
return FALSE;
gfxSystemUnlock();
return TRUE;
}
#endif /* GFX_USE_GADC */

View File

@ -209,12 +209,9 @@ void gadcHighSpeedStop(void);
* completion.
* @note The result buffer must be large enough to store one sample per device
* described by the 'physdev' parameter.
* @note If calling this routine would exceed @p GADC_MAX_LOWSPEED_DEVICES simultaneous low
* speed devices, the routine will wait for an available slot to complete the
* conversion.
* @note Specifying more than one device in physdev is possible but discouraged as the
* calculations to ensure the high speed ADC correctness will be incorrect. Symptoms
* from over-running the high speed ADC include high speed samples being lost.
* from over-running the high speed ADC include high speed device stalling or samples being lost.
*
* @api
*/
@ -222,7 +219,7 @@ void gadcLowSpeedGet(uint32_t physdev, adcsample_t *buffer);
/**
* @brief Perform a low speed ADC conversion with callback (in a thread context)
* @details Returns FALSE if there are no free low speed ADC slots. See @p GADC_MAX_LOWSPEED_DEVICES for details.
* @details Returns FALSE if internal memory allocation fails
*
* @param[in] physdev A value passed to describe which physical ADC devices/channels to use.
* @param[in] buffer The static buffer to put the ADC samples into.
@ -237,8 +234,6 @@ void gadcLowSpeedGet(uint32_t physdev, adcsample_t *buffer);
* completion.
* @note The result buffer must be large enough to store one sample per device
* described by the 'physdev' parameter.
* @note As this routine uses a low speed ADC, it asserts if you try to run more than @p GADC_MAX_LOWSPEED_DEVICES
* at the same time.
* @note Specifying more than one device in physdev is possible but discouraged as the
* calculations to ensure the high speed ADC correctness will be incorrect. Symptoms
* from over-running the high speed ADC include high speed samples being lost.
@ -255,4 +250,3 @@ bool_t gadcLowSpeedStart(uint32_t physdev, adcsample_t *buffer, GADCCallbackFunc
#endif /* _GADC_H */
/** @} */