ILI9320 driver ported to streaming interface.

ugfx_release_2.6
inmarket 2013-09-30 16:25:46 +10:00
parent 07f96ec3ee
commit fd01f1a4f3
5 changed files with 293 additions and 512 deletions

View File

@ -8,19 +8,14 @@
/**
* @file drivers/gdisp/ILI9320/gdisp_lld.c
* @brief GDISP Graphics Driver subsystem low level driver source for the ILI9320 display.
*
* @addtogroup GDISP
* @{
*/
#include "gfx.h"
#if GFX_USE_GDISP /*|| defined(__DOXYGEN__)*/
#if GFX_USE_GDISP
/* Include the emulation code for things we don't support */
#include "gdisp/lld/emulation.c"
#include "gdisp_lld_board.h"
#define GDISP_LLD_DECLARATIONS
#include "gdisp/lld/gdisp_lld.h"
/*===========================================================================*/
/* Driver local definitions. */
@ -36,15 +31,20 @@
#undef GDISP_SCREEN_WIDTH
#endif
#define GDISP_SCREEN_WIDTH 240
#define GDISP_SCREEN_HEIGHT 320
#include "gdisp_lld_board.h"
#define GDISP_INITIAL_CONTRAST 50
#define GDISP_INITIAL_BACKLIGHT 100
/*===========================================================================*/
/* Driver exported variables. */
/*===========================================================================*/
#ifndef GDISP_SCREEN_HEIGHT
#define GDISP_SCREEN_HEIGHT 320
#endif
#ifndef GDISP_SCREEN_WIDTH
#define GDISP_SCREEN_WIDTH 240
#endif
#ifndef GDISP_INITIAL_CONTRAST
#define GDISP_INITIAL_CONTRAST 50
#endif
#ifndef GDISP_INITIAL_BACKLIGHT
#define GDISP_INITIAL_BACKLIGHT 100
#endif
/*===========================================================================*/
/* Driver local variables. */
@ -54,531 +54,293 @@ uint32_t DISPLAY_CODE;
/*===========================================================================*/
/* Driver local functions. */
/*===========================================================================*/
static inline void lld_lcdDelay(uint16_t us) {
gfxSleepMicroseconds(us);
#define dummy_read() { volatile uint16_t dummy; dummy = read_data(); (void) dummy; }
#define write_reg(reg, data) { write_index(reg); write_data(data); }
static void set_viewport(uint16_t x, uint16_t y, uint16_t cx, uint16_t cy) {
switch(g->g.Orientation) {
case GDISP_ROTATE_0:
case GDISP_ROTATE_180:
write_reg(0x0050, x);
write_reg(0x0051, x + cx - 1);
write_reg(0x0052, y);
write_reg(0x0053, y + cy - 1);
write_reg(0x0020, x);
write_reg(0x0021, y);
break;
case GDISP_ROTATE_90:
case GDISP_ROTATE_270:
write_reg(0x0050, y);
write_reg(0x0051, y + cy - 1);
write_reg(0x0052, x);
write_reg(0x0053, x + cx - 1);
write_reg(0x0020, y);
write_reg(0x0021, x);
break;
}
write_index(0x0022);
}
static inline void lld_lcdWriteIndex(uint16_t index) {
gdisp_lld_write_index(index);
}
static inline void lld_lcdWriteData(uint16_t data) {
gdisp_lld_write_data(data);
}
static inline void lld_lcdWriteReg(uint16_t lcdReg, uint16_t lcdRegValue) {
gdisp_lld_write_index(lcdReg);
gdisp_lld_write_data(lcdRegValue);
}
static inline uint16_t lld_lcdReadData(void) {
return gdisp_lld_read_data();
}
static inline uint16_t lld_lcdReadReg(uint16_t lcdReg) {
volatile uint16_t dummy;
gdisp_lld_write_index(lcdReg);
dummy = lld_lcdReadData();
(void)dummy;
return lld_lcdReadData();
}
static inline void lld_lcdWriteStreamStart(void) {
lld_lcdWriteIndex(0x0022);
}
static inline void lld_lcdWriteStreamStop(void) {
}
static inline void lld_lcdWriteStream(uint16_t *buffer, uint16_t size) {
uint16_t i;
for(i = 0; i < size; i++)
lld_lcdWriteData(buffer[i]);
}
static inline void lld_lcdReadStreamStart(void) {
lld_lcdWriteIndex(0x0022);
}
static inline void lld_lcdReadStreamStop(void) {
}
static inline void lld_lcdReadStream(uint16_t *buffer, size_t size) {
uint16_t i;
volatile uint16_t dummy;
dummy = lld_lcdReadData();
(void)dummy;
for(i = 0; i < size; i++)
buffer[i] = lld_lcdReadData();
}
bool_t gdisp_lld_init(void) {
LLDSPEC bool_t gdisp_lld_init(GDISPDriver *g) {
/* Initialise your display */
gdisp_lld_init_board();
init_board();
/* Hardware reset */
gdisp_lld_reset_pin(TRUE);
lld_lcdDelay(1000);
gdisp_lld_reset_pin(FALSE);
lld_lcdDelay(1000);
setpin_reset(TRUE);
gfxSleepMicroseconds(1000);
setpin_reset(FALSE);
gfxSleepMicroseconds(1000);
DISPLAY_CODE = lld_lcdReadReg(0);
lld_lcdWriteReg(0x0000, 0x0001); //start Int. osc
lld_lcdDelay(500);
lld_lcdWriteReg(0x0001, 0x0100); //Set SS bit (shift direction of outputs is from S720 to S1)
lld_lcdWriteReg(0x0002, 0x0700); //select the line inversion
lld_lcdWriteReg(0x0003, 0x1038); //Entry mode(Horizontal : increment,Vertical : increment, AM=1)
lld_lcdWriteReg(0x0004, 0x0000); //Resize control(No resizing)
lld_lcdWriteReg(0x0008, 0x0202); //front and back porch 2 lines
lld_lcdWriteReg(0x0009, 0x0000); //select normal scan
lld_lcdWriteReg(0x000A, 0x0000); //display control 4
lld_lcdWriteReg(0x000C, 0x0000); //system interface(2 transfer /pixel), internal sys clock,
lld_lcdWriteReg(0x000D, 0x0000); //Frame marker position
lld_lcdWriteReg(0x000F, 0x0000); //selects clk, enable and sync signal polarity,
lld_lcdWriteReg(0x0010, 0x0000); //
lld_lcdWriteReg(0x0011, 0x0000); //power control 2 reference voltages = 1:1,
lld_lcdWriteReg(0x0012, 0x0000); //power control 3 VRH
lld_lcdWriteReg(0x0013, 0x0000); //power control 4 VCOM amplitude
lld_lcdDelay(500);
lld_lcdWriteReg(0x0010, 0x17B0); //power control 1 BT,AP
lld_lcdWriteReg(0x0011, 0x0137); //power control 2 DC,VC
lld_lcdDelay(500);
lld_lcdWriteReg(0x0012, 0x0139); //power control 3 VRH
lld_lcdDelay(500);
lld_lcdWriteReg(0x0013, 0x1d00); //power control 4 vcom amplitude
lld_lcdWriteReg(0x0029, 0x0011); //power control 7 VCOMH
lld_lcdDelay(500);
lld_lcdWriteReg(0x0030, 0x0007);
lld_lcdWriteReg(0x0031, 0x0403);
lld_lcdWriteReg(0x0032, 0x0404);
lld_lcdWriteReg(0x0035, 0x0002);
lld_lcdWriteReg(0x0036, 0x0707);
lld_lcdWriteReg(0x0037, 0x0606);
lld_lcdWriteReg(0x0038, 0x0106);
lld_lcdWriteReg(0x0039, 0x0007);
lld_lcdWriteReg(0x003c, 0x0700);
lld_lcdWriteReg(0x003d, 0x0707);
lld_lcdWriteReg(0x0020, 0x0000); //starting Horizontal GRAM Address
lld_lcdWriteReg(0x0021, 0x0000); //starting Vertical GRAM Address
lld_lcdWriteReg(0x0050, 0x0000); //Horizontal GRAM Start Position
lld_lcdWriteReg(0x0051, 0x00EF); //Horizontal GRAM end Position
lld_lcdWriteReg(0x0052, 0x0000); //Vertical GRAM Start Position
lld_lcdWriteReg(0x0053, 0x013F); //Vertical GRAM end Position
acquire_bus();
write_index(0); // Get controller version
dummy_read();
DISPLAY_CODE = read_data();
write_reg(0x0000, 0x0001); //start Int. osc
gfxSleepMicroseconds(500);
write_reg(0x0001, 0x0100); //Set SS bit (shift direction of outputs is from S720 to S1)
write_reg(0x0002, 0x0700); //select the line inversion
write_reg(0x0003, 0x1038); //Entry mode(Horizontal : increment,Vertical : increment, AM=1)
write_reg(0x0004, 0x0000); //Resize control(No resizing)
write_reg(0x0008, 0x0202); //front and back porch 2 lines
write_reg(0x0009, 0x0000); //select normal scan
write_reg(0x000A, 0x0000); //display control 4
write_reg(0x000C, 0x0000); //system interface(2 transfer /pixel), internal sys clock,
write_reg(0x000D, 0x0000); //Frame marker position
write_reg(0x000F, 0x0000); //selects clk, enable and sync signal polarity,
write_reg(0x0010, 0x0000); //
write_reg(0x0011, 0x0000); //power control 2 reference voltages = 1:1,
write_reg(0x0012, 0x0000); //power control 3 VRH
write_reg(0x0013, 0x0000); //power control 4 VCOM amplitude
gfxSleepMicroseconds(500);
write_reg(0x0010, 0x17B0); //power control 1 BT,AP
write_reg(0x0011, 0x0137); //power control 2 DC,VC
gfxSleepMicroseconds(500);
write_reg(0x0012, 0x0139); //power control 3 VRH
gfxSleepMicroseconds(500);
write_reg(0x0013, 0x1d00); //power control 4 vcom amplitude
write_reg(0x0029, 0x0011); //power control 7 VCOMH
gfxSleepMicroseconds(500);
write_reg(0x0030, 0x0007);
write_reg(0x0031, 0x0403);
write_reg(0x0032, 0x0404);
write_reg(0x0035, 0x0002);
write_reg(0x0036, 0x0707);
write_reg(0x0037, 0x0606);
write_reg(0x0038, 0x0106);
write_reg(0x0039, 0x0007);
write_reg(0x003c, 0x0700);
write_reg(0x003d, 0x0707);
write_reg(0x0020, 0x0000); //starting Horizontal GRAM Address
write_reg(0x0021, 0x0000); //starting Vertical GRAM Address
write_reg(0x0050, 0x0000); //Horizontal GRAM Start Position
write_reg(0x0051, 0x00EF); //Horizontal GRAM end Position
write_reg(0x0052, 0x0000); //Vertical GRAM Start Position
write_reg(0x0053, 0x013F); //Vertical GRAM end Position
switch (DISPLAY_CODE) {
case 0x9320:
lld_lcdWriteReg(0x0060, 0x2700); //starts scanning from G1, and 320 drive lines
write_reg(0x0060, 0x2700); //starts scanning from G1, and 320 drive lines
break;
case 0x9325:
lld_lcdWriteReg(0x0060, 0xA700); //starts scanning from G1, and 320 drive lines
write_reg(0x0060, 0xA700); //starts scanning from G1, and 320 drive lines
break;
}
lld_lcdWriteReg(0x0061, 0x0001); //fixed base display
lld_lcdWriteReg(0x006a, 0x0000); //no scroll
lld_lcdWriteReg(0x0090, 0x0010); //set Clocks/Line =16, Internal Operation Clock Frequency=fosc/1,
lld_lcdWriteReg(0x0092, 0x0000); //set gate output non-overlap period=0
lld_lcdWriteReg(0x0093, 0x0003); //set Source Output Position=3
lld_lcdWriteReg(0x0095, 0x0110); //RGB interface(Clocks per line period=16 clocks)
lld_lcdWriteReg(0x0097, 0x0110); //set Gate Non-overlap Period 0 locksc
lld_lcdWriteReg(0x0098, 0x0110); //
lld_lcdWriteReg(0x0007, 0x0173); //display On
write_reg(0x0061, 0x0001); //fixed base display
write_reg(0x006a, 0x0000); //no scroll
write_reg(0x0090, 0x0010); //set Clocks/Line =16, Internal Operation Clock Frequency=fosc/1,
write_reg(0x0092, 0x0000); //set gate output non-overlap period=0
write_reg(0x0093, 0x0003); //set Source Output Position=3
write_reg(0x0095, 0x0110); //RGB interface(Clocks per line period=16 clocks)
write_reg(0x0097, 0x0110); //set Gate Non-overlap Period 0 locksc
write_reg(0x0098, 0x0110); //
write_reg(0x0007, 0x0173); //display On
release_bus();
// Turn on the backlight
gdisp_lld_backlight(GDISP_INITIAL_BACKLIGHT);
set_backlight(GDISP_INITIAL_BACKLIGHT);
/* Initialise the GDISP structure */
GDISP.Width = GDISP_SCREEN_WIDTH;
GDISP.Height = GDISP_SCREEN_HEIGHT;
GDISP.Orientation = GDISP_ROTATE_0;
GDISP.Powermode = powerOn;
GDISP.Backlight = GDISP_INITIAL_BACKLIGHT;
GDISP.Contrast = GDISP_INITIAL_CONTRAST;
#if GDISP_NEED_VALIDATION || GDISP_NEED_CLIP
GDISP.clipx0 = 0;
GDISP.clipy0 = 0;
GDISP.clipx1 = GDISP.Width;
GDISP.clipy1 = GDISP.Height;
#endif
g->g.Width = GDISP_SCREEN_WIDTH;
g->g.Height = GDISP_SCREEN_HEIGHT;
g->g.Orientation = GDISP_ROTATE_0;
g->g.Powermode = powerOn;
g->g.Backlight = GDISP_INITIAL_BACKLIGHT;
g->g.Contrast = GDISP_INITIAL_CONTRAST;
return TRUE;
}
static void lld_lcdSetCursor(uint16_t x, uint16_t y) {
switch(GDISP.Orientation) {
case GDISP_ROTATE_0:
lld_lcdWriteReg(0x0020, x);
lld_lcdWriteReg(0x0021, y);
break;
case GDISP_ROTATE_90:
lld_lcdWriteReg(0x0020, y);
lld_lcdWriteReg(0x0021, x);
break;
case GDISP_ROTATE_180:
lld_lcdWriteReg(0x0020, x);
lld_lcdWriteReg(0x0021, y);
break;
case GDISP_ROTATE_270:
lld_lcdWriteReg(0x0020, y);
lld_lcdWriteReg(0x0021, x);
break;
#if GDISP_HARDWARE_STREAM_WRITE
LLDSPEC void gdisp_lld_write_start(GDISPDriver *g) {
acquire_bus();
set_viewport(g);
}
}
static void lld_lcdSetViewPort(uint16_t x, uint16_t y, uint16_t cx, uint16_t cy) {
switch(GDISP.Orientation) {
case GDISP_ROTATE_0:
lld_lcdWriteReg(0x0050, x);
lld_lcdWriteReg(0x0051, x + cx - 1);
lld_lcdWriteReg(0x0052, y);
lld_lcdWriteReg(0x0053, y + cy - 1);
break;
case GDISP_ROTATE_90:
lld_lcdWriteReg(0x0050, y);
lld_lcdWriteReg(0x0051, y + cy - 1);
lld_lcdWriteReg(0x0052, x);
lld_lcdWriteReg(0x0053, x + cx - 1);
break;
case GDISP_ROTATE_180:
lld_lcdWriteReg(0x0050, x);
lld_lcdWriteReg(0x0051, x + cx - 1);
lld_lcdWriteReg(0x0052, y);
lld_lcdWriteReg(0x0053, y + cy - 1);
break;
case GDISP_ROTATE_270:
lld_lcdWriteReg(0x0050, y);
lld_lcdWriteReg(0x0051, y + cy - 1);
lld_lcdWriteReg(0x0052, x);
lld_lcdWriteReg(0x0053, x + cx - 1);
break;
LLDSPEC void gdisp_lld_write_color(GDISPDriver *g) {
write_data(g->p.color);
}
lld_lcdSetCursor(x, y);
}
static inline void lld_lcdResetViewPort(void) {
switch(GDISP.Orientation) {
case GDISP_ROTATE_0:
case GDISP_ROTATE_180:
lld_lcdSetViewPort(0, 0, GDISP_SCREEN_WIDTH, GDISP_SCREEN_HEIGHT);
break;
case GDISP_ROTATE_90:
case GDISP_ROTATE_270:
lld_lcdSetViewPort(0, 0, GDISP_SCREEN_HEIGHT, GDISP_SCREEN_WIDTH);
break;
}
}
void gdisp_lld_draw_pixel(coord_t x, coord_t y, color_t color) {
#if GDISP_NEED_VALIDATION || GDISP_NEED_CLIP
if (x < GDISP.clipx0 || y < GDISP.clipy0 || x >= GDISP.clipx1 || y >= GDISP.clipy1) return;
#endif
lld_lcdSetCursor(x, y);
lld_lcdWriteReg(0x0022, color);
}
#if GDISP_HARDWARE_CLEARS || defined(__DOXYGEN__)
void gdisp_lld_clear(color_t color) {
unsigned i;
lld_lcdSetCursor(0, 0);
lld_lcdWriteStreamStart();
for(i = 0; i < GDISP_SCREEN_WIDTH * GDISP_SCREEN_HEIGHT; i++)
lld_lcdWriteData(color);
lld_lcdWriteStreamStop();
LLDSPEC void gdisp_lld_write_stop(GDISPDriver *g) {
release_bus();
}
#endif
#if GDISP_HARDWARE_FILLS || defined(__DOXYGEN__)
void gdisp_lld_fill_area(coord_t x, coord_t y, coord_t cx, coord_t cy, color_t color) {
#if GDISP_NEED_VALIDATION || GDISP_NEED_CLIP
if (x < GDISP.clipx0) { cx -= GDISP.clipx0 - x; x = GDISP.clipx0; }
if (y < GDISP.clipy0) { cy -= GDISP.clipy0 - y; y = GDISP.clipy0; }
if (cx <= 0 || cy <= 0 || x >= GDISP.clipx1 || y >= GDISP.clipy1) return;
if (x+cx > GDISP.clipx1) cx = GDISP.clipx1 - x;
if (y+cy > GDISP.clipy1) cy = GDISP.clipy1 - y;
#endif
unsigned i, area;
area = cx*cy;
lld_lcdSetViewPort(x, y, cx, cy);
lld_lcdWriteStreamStart();
for(i = 0; i < area; i++)
lld_lcdWriteData(color);
lld_lcdWriteStreamStop();
lld_lcdResetViewPort();
#if GDISP_HARDWARE_STREAM_READ
LLDSPEC void gdisp_lld_read_start(GDISPDriver *g) {
acquire_bus();
set_viewport(g);
setreadmode();
dummy_read();
}
LLDSPEC color_t gdisp_lld_read_color(GDISPDriver *g) {
return read_data();
}
LLDSPEC void gdisp_lld_read_stop(GDISPDriver *g) {
setwritemode();
release_bus();
}
#endif
#if GDISP_HARDWARE_BITFILLS || defined(__DOXYGEN__)
void gdisp_lld_blit_area_ex(coord_t x, coord_t y, coord_t cx, coord_t cy, coord_t srcx, coord_t srcy, coord_t srccx, const pixel_t *buffer) {
coord_t endx, endy;
unsigned lg;
#if GDISP_NEED_CONTROL && GDISP_HARDWARE_CONTROL
LLDSPEC void gdisp_lld_control(GDISPDriver *g) {
switch(g->p.x) {
case GDISP_CONTROL_POWER:
if (g->g.Powermode == (powermode_t)g->p.ptr)
return;
switch((powermode_t)g->p.ptr) {
case powerOff:
acquire_bus();
write_reg(0x0007, 0x0000);
write_reg(0x0010, 0x0000);
write_reg(0x0011, 0x0000);
write_reg(0x0012, 0x0000);
write_reg(0x0013, 0x0000);
release_bus();
#if GDISP_NEED_VALIDATION || GDISP_NEED_CLIP
if (x < GDISP.clipx0) { cx -= GDISP.clipx0 - x; srcx += GDISP.clipx0 - x; x = GDISP.clipx0; }
if (y < GDISP.clipy0) { cy -= GDISP.clipy0 - y; srcy += GDISP.clipy0 - y; y = GDISP.clipy0; }
if (srcx+cx > srccx) cx = srccx - srcx;
if (cx <= 0 || cy <= 0 || x >= GDISP.clipx1 || y >= GDISP.clipy1) return;
if (x+cx > GDISP.clipx1) cx = GDISP.clipx1 - x;
if (y+cy > GDISP.clipy1) cy = GDISP.clipy1 - y;
#endif
set_backlight(0);
break;
lld_lcdSetViewPort(x, y, cx, cy);
lld_lcdWriteStreamStart();
case powerOn:
//*************Power On sequence ******************//
acquire_bus();
write_reg(0x0010, 0x0000); /* SAP, BT[3:0], AP, DSTB, SLP, STB */
write_reg(0x0011, 0x0000); /* DC1[2:0], DC0[2:0], VC[2:0] */
write_reg(0x0012, 0x0000); /* VREG1OUT voltage */
write_reg(0x0013, 0x0000); /* VDV[4:0] for VCOM amplitude */
gfxSleepMicroseconds(2000); /* Dis-charge capacitor power voltage */
write_reg(0x0010, 0x17B0); /* SAP, BT[3:0], AP, DSTB, SLP, STB */
write_reg(0x0011, 0x0147); /* DC1[2:0], DC0[2:0], VC[2:0] */
gfxSleepMicroseconds(500);
write_reg(0x0012, 0x013C); /* VREG1OUT voltage */
gfxSleepMicroseconds(500);
write_reg(0x0013, 0x0E00); /* VDV[4:0] for VCOM amplitude */
write_reg(0x0029, 0x0009); /* VCM[4:0] for VCOMH */
gfxSleepMicroseconds(500);
write_reg(0x0007, 0x0173); /* 262K color and display ON */
release_bus();
endx = srcx + cx;
endy = y + cy;
lg = srccx - cx;
buffer += srcx + srcy * srccx;
for(; y < endy; y++, buffer += lg)
for(x=srcx; x < endx; x++)
lld_lcdWriteData(*buffer++);
lld_lcdWriteStreamStop();
lld_lcdResetViewPort();
}
#endif
set_backlight(g->g.Backlight);
if(g->g.Powermode != powerSleep || g->g.Powermode != powerDeepSleep)
gdisp_lld_init();
break;
#if (GDISP_NEED_PIXELREAD && GDISP_HARDWARE_PIXELREAD) || defined(__DOXYGEN__)
color_t gdisp_lld_get_pixel_color(coord_t x, coord_t y) {
color_t color;
case powerSleep:
acquire_bus();
write_reg(0x0007, 0x0000); /* display OFF */
write_reg(0x0010, 0x0000); /* SAP, BT[3:0], APE, AP, DSTB, SLP */
write_reg(0x0011, 0x0000); /* DC1[2:0], DC0[2:0], VC[2:0] */
write_reg(0x0012, 0x0000); /* VREG1OUT voltage */
write_reg(0x0013, 0x0000); /* VDV[4:0] for VCOM amplitude */
gfxSleepMicroseconds(2000); /* Dis-charge capacitor power voltage */
write_reg(0x0010, 0x0002); /* SAP, BT[3:0], APE, AP, DSTB, SLP */
release_bus();
#if GDISP_NEED_VALIDATION || GDISP_NEED_CLIP
if (x < 0 || x >= GDISP.Width || y < 0 || y >= GDISP.Height) return 0;
#endif
set_backlight(0);
break;
lld_lcdSetCursor(x, y);
lld_lcdWriteStreamStart();
case powerDeepSleep:
acquire_bus();
write_reg(0x0007, 0x0000); /* display OFF */
write_reg(0x0010, 0x0000); /* SAP, BT[3:0], APE, AP, DSTB, SLP */
write_reg(0x0011, 0x0000); /* DC1[2:0], DC0[2:0], VC[2:0] */
write_reg(0x0012, 0x0000); /* VREG1OUT voltage */
write_reg(0x0013, 0x0000); /* VDV[4:0] for VCOM amplitude */
gfxSleepMicroseconds(2000); /* Dis-charge capacitor power voltage */
write_reg(0x0010, 0x0004); /* SAP, BT[3:0], APE, AP, DSTB, SLP */
release_bus();
color = lld_lcdReadData();
color = lld_lcdReadData();
set_backlight(0);
break;
lld_lcdWriteStreamStop();
return color;
}
#endif
#if (GDISP_NEED_SCROLL && GDISP_HARDWARE_SCROLL) || defined(__DOXYGEN__)
void gdisp_lld_vertical_scroll(coord_t x, coord_t y, coord_t cx, coord_t cy, int lines, color_t bgcolor) {
static color_t buf[((GDISP_SCREEN_HEIGHT > GDISP_SCREEN_WIDTH ) ? GDISP_SCREEN_HEIGHT : GDISP_SCREEN_WIDTH)];
coord_t row0, row1;
unsigned i, gap, abslines;
#if GDISP_NEED_VALIDATION || GDISP_NEED_CLIP
if (x < GDISP.clipx0) { cx -= GDISP.clipx0 - x; x = GDISP.clipx0; }
if (y < GDISP.clipy0) { cy -= GDISP.clipy0 - y; y = GDISP.clipy0; }
if (!lines || cx <= 0 || cy <= 0 || x >= GDISP.clipx1 || y >= GDISP.clipy1) return;
if (x+cx > GDISP.clipx1) cx = GDISP.clipx1 - x;
if (y+cy > GDISP.clipy1) cy = GDISP.clipy1 - y;
#endif
abslines = lines < 0 ? -lines : lines;
if (abslines >= cy) {
abslines = cy;
gap = 0;
} else {
gap = cy - abslines;
for(i = 0; i < gap; i++) {
if(lines > 0) {
row0 = y + i + lines;
row1 = y + i;
} else {
row0 = (y - i - 1) + lines;
row1 = (y - i - 1);
}
/* read row0 into the buffer and then write at row1*/
lld_lcdSetViewPort(x, row0, cx, 1);
lld_lcdReadStreamStart();
lld_lcdReadStream(buf, cx);
lld_lcdReadStreamStop();
lld_lcdSetViewPort(x, row1, cx, 1);
lld_lcdWriteStreamStart();
lld_lcdWriteStream(buf, cx);
lld_lcdWriteStreamStop();
}
}
/* fill the remaining gap */
lld_lcdSetViewPort(x, lines > 0 ? (y+gap) : y, cx, abslines);
lld_lcdWriteStreamStart();
gap = cx*abslines;
for(i = 0; i < gap; i++) lld_lcdWriteData(bgcolor);
lld_lcdWriteStreamStop();
lld_lcdResetViewPort();
}
#endif
#if (GDISP_NEED_CONTROL && GDISP_HARDWARE_CONTROL) || defined(__DOXYGEN__)
void gdisp_lld_control(unsigned what, void *value) {
switch(what) {
case GDISP_CONTROL_POWER:
if(GDISP.Powermode == (gdisp_powermode_t)value)
default:
return;
switch((gdisp_powermode_t)value) {
case powerOff:
acquire_bus();
lld_lcdWriteReg(0x0007, 0x0000);
lld_lcdWriteReg(0x0010, 0x0000);
lld_lcdWriteReg(0x0011, 0x0000);
lld_lcdWriteReg(0x0012, 0x0000);
lld_lcdWriteReg(0x0013, 0x0000);
release_bus();
gdisp_lld_backlight(0);
break;
case powerOn:
//*************Power On sequence ******************//
acquire_bus();
lld_lcdWriteReg(0x0010, 0x0000); /* SAP, BT[3:0], AP, DSTB, SLP, STB */
lld_lcdWriteReg(0x0011, 0x0000); /* DC1[2:0], DC0[2:0], VC[2:0] */
lld_lcdWriteReg(0x0012, 0x0000); /* VREG1OUT voltage */
lld_lcdWriteReg(0x0013, 0x0000); /* VDV[4:0] for VCOM amplitude */
lld_lcdDelay(2000); /* Dis-charge capacitor power voltage */
lld_lcdWriteReg(0x0010, 0x17B0); /* SAP, BT[3:0], AP, DSTB, SLP, STB */
lld_lcdWriteReg(0x0011, 0x0147); /* DC1[2:0], DC0[2:0], VC[2:0] */
lld_lcdDelay(500);
lld_lcdWriteReg(0x0012, 0x013C); /* VREG1OUT voltage */
lld_lcdDelay(500);
lld_lcdWriteReg(0x0013, 0x0E00); /* VDV[4:0] for VCOM amplitude */
lld_lcdWriteReg(0x0029, 0x0009); /* VCM[4:0] for VCOMH */
lld_lcdDelay(500);
lld_lcdWriteReg(0x0007, 0x0173); /* 262K color and display ON */
release_bus();
gdisp_lld_backlight(GDISP.Backlight);
if(GDISP.Powermode != powerSleep || GDISP.Powermode != powerDeepSleep)
gdisp_lld_init();
break;
case powerSleep:
acquire_bus();
lld_lcdWriteReg(0x0007, 0x0000); /* display OFF */
lld_lcdWriteReg(0x0010, 0x0000); /* SAP, BT[3:0], APE, AP, DSTB, SLP */
lld_lcdWriteReg(0x0011, 0x0000); /* DC1[2:0], DC0[2:0], VC[2:0] */
lld_lcdWriteReg(0x0012, 0x0000); /* VREG1OUT voltage */
lld_lcdWriteReg(0x0013, 0x0000); /* VDV[4:0] for VCOM amplitude */
lld_lcdDelay(2000); /* Dis-charge capacitor power voltage */
lld_lcdWriteReg(0x0010, 0x0002); /* SAP, BT[3:0], APE, AP, DSTB, SLP */
release_bus();
gdisp_lld_backlight(0);
break;
case powerDeepSleep:
acquire_bus();
lld_lcdWriteReg(0x0007, 0x0000); /* display OFF */
lld_lcdWriteReg(0x0010, 0x0000); /* SAP, BT[3:0], APE, AP, DSTB, SLP */
lld_lcdWriteReg(0x0011, 0x0000); /* DC1[2:0], DC0[2:0], VC[2:0] */
lld_lcdWriteReg(0x0012, 0x0000); /* VREG1OUT voltage */
lld_lcdWriteReg(0x0013, 0x0000); /* VDV[4:0] for VCOM amplitude */
lld_lcdDelay(2000); /* Dis-charge capacitor power voltage */
lld_lcdWriteReg(0x0010, 0x0004); /* SAP, BT[3:0], APE, AP, DSTB, SLP */
release_bus();
gdisp_lld_backlight(0);
break;
default:
return;
}
GDISP.Powermode = (gdisp_powermode_t)value;
g->g.Powermode = (powermode_t)g->p.ptr;
return;
case GDISP_CONTROL_ORIENTATION:
if(GDISP.Orientation == (gdisp_orientation_t)value)
if (g->g.Orientation == (orientation_t)g->p.ptr)
return;
switch((gdisp_orientation_t)value) {
case GDISP_ROTATE_0:
acquire_bus();
lld_lcdWriteReg(0x0001, 0x0100);
lld_lcdWriteReg(0x0003, 0x1038);
lld_lcdWriteReg(0x0060, 0x2700);
release_bus();
switch((orientation_t)g->p.ptr) {
case GDISP_ROTATE_0:
acquire_bus();
write_reg(0x0001, 0x0100);
write_reg(0x0003, 0x1038);
write_reg(0x0060, 0x2700);
release_bus();
GDISP.Height = GDISP_SCREEN_HEIGHT;
GDISP.Width = GDISP_SCREEN_WIDTH;
break;
g->g.Height = GDISP_SCREEN_HEIGHT;
g->g.Width = GDISP_SCREEN_WIDTH;
break;
case GDISP_ROTATE_90:
acquire_bus();
lld_lcdWriteReg(0x0001, 0x0100);
lld_lcdWriteReg(0x0003, 0x1030);
lld_lcdWriteReg(0x0060, 0x2700);
release_bus();
case GDISP_ROTATE_90:
acquire_bus();
write_reg(0x0001, 0x0100);
write_reg(0x0003, 0x1030);
write_reg(0x0060, 0x2700);
release_bus();
GDISP.Height = GDISP_SCREEN_WIDTH;
GDISP.Width = GDISP_SCREEN_HEIGHT;
break;
case GDISP_ROTATE_180:
acquire_bus();
lld_lcdWriteReg(0x0001, 0x0000);
lld_lcdWriteReg(0x0003, 0x1030);
lld_lcdWriteReg(0x0060, 0x2700);
release_bus();
g->g.Height = GDISP_SCREEN_WIDTH;
g->g.Width = GDISP_SCREEN_HEIGHT;
break;
GDISP.Height = GDISP_SCREEN_HEIGHT;
GDISP.Width = GDISP_SCREEN_WIDTH;
break;
case GDISP_ROTATE_180:
acquire_bus();
write_reg(0x0001, 0x0000);
write_reg(0x0003, 0x1030);
write_reg(0x0060, 0x2700);
release_bus();
g->g.Height = GDISP_SCREEN_HEIGHT;
g->g.Width = GDISP_SCREEN_WIDTH;
break;
case GDISP_ROTATE_270:
acquire_bus();
write_reg(0x0001, 0x0000);
write_reg(0x0003, 0x1038);
write_reg(0x0060, 0xA700);
release_bus();
g->g.Height = GDISP_SCREEN_WIDTH;
g->g.Width = GDISP_SCREEN_HEIGHT;
break;
case GDISP_ROTATE_270:
acquire_bus();
lld_lcdWriteReg(0x0001, 0x0000);
lld_lcdWriteReg(0x0003, 0x1038);
lld_lcdWriteReg(0x0060, 0xA700);
release_bus();
GDISP.Height = GDISP_SCREEN_WIDTH;
GDISP.Width = GDISP_SCREEN_HEIGHT;
break;
default:
return;
default:
return;
}
#if GDISP_NEED_CLIP || GDISP_NEED_VALIDATION
GDISP.clipx0 = 0;
GDISP.clipy0 = 0;
GDISP.clipx1 = GDISP.Width;
GDISP.clipy1 = GDISP.Height;
#endif
GDISP.Orientation = (gdisp_orientation_t)value;
g->g.Orientation = (orientation_t)value;
return;
case GDISP_CONTROL_BACKLIGHT:
if((unsigned)value > 100) value = (void *)100;
gdisp_lld_backlight((unsigned)value);
GDISP.Backlight = (unsigned)value;
break;
case GDISP_CONTROL_BACKLIGHT:
if ((unsigned)g->p.ptr > 100)
g->p.ptr = (void *)100;
set_backlight((unsigned)g->p.ptr);
g->g.Backlight = (unsigned)g->p.ptr;
return;
default:
return;
}
}
#endif
#endif /* GFX_USE_GDISP */
/** @} */

View File

@ -20,7 +20,7 @@
#define noinline __attribute__((noinline))
#endif
static void gdisp_lld_init_board(void) {
static void init_board(void) {
// RST
palSetPadMode(IOPORTA, 7, PAL_MODE_OUTPUT);
palClearPad(IOPORTA, 7);
@ -56,14 +56,14 @@ static void gdisp_lld_init_board(void) {
#define PmpWaitBusy() do {} while (PMMODEbits.BUSY)
static noinline void gdisp_lld_reset_pin(bool_t state) {
static noinline void setpin_reset(bool_t state) {
if (state)
palClearPad(IOPORTA, 7);
else
palSetPad(IOPORTA, 7);
}
static noinline void gdisp_lld_write_index(uint16_t data) {
static noinline void write_index(uint16_t data) {
volatile uint16_t dummy;
PmpWaitBusy();
@ -76,18 +76,24 @@ static noinline void gdisp_lld_write_index(uint16_t data) {
(void)dummy;
}
static noinline void gdisp_lld_write_data(uint16_t data) {
static noinline void write_data(uint16_t data) {
PMDIN = data;
PmpWaitBusy();
}
static noinline uint16_t gdisp_lld_read_data(void) {
static inline void setreadmode(void) {
}
static inline void setwritemode(void) {
}
static noinline uint16_t read_data(void) {
PmpWaitBusy();
return PMDIN;
}
/* if not available, just ignore the argument and return */
static void gdisp_lld_backlight(uint8_t percentage) {
static void set_backlight(uint8_t percentage) {
if (percentage)
palClearPad(IOPORTD, 3);
else
@ -101,6 +107,7 @@ static inline void acquire_bus(void) {
static inline void release_bus(void) {
/* Nothing to do here since LCD is the only device on that bus */
}
#endif /* GDISP_LLD_BOARD_H */
/** @} */

View File

@ -19,7 +19,7 @@
#define GDISP_REG (*((volatile uint16_t *) 0x60000000)) /* RS = 0 */
#define GDISP_RAM (*((volatile uint16_t *) 0x60100000)) /* RS = 1 */
static inline void gdisp_lld_init_board(void) {
static inline void init_board(void) {
/* FSMC setup for F1 */
rccEnableAHB(RCC_AHBENR_FSMCEN, 0);
@ -41,7 +41,7 @@ static inline void gdisp_lld_init_board(void) {
FSMC_Bank1->BTCR[FSMC_Bank] = FSMC_BCR1_MWID_0 | FSMC_BCR1_WREN | FSMC_BCR1_MBKEN;
}
static inline void gdisp_lld_reset_pin(bool_t state) {
static inline void setpin_reset(bool_t state) {
if(state)
palClearPad(GPIOE, GPIOE_TFT_RST);
else
@ -56,19 +56,25 @@ static inline void release_bus(void) {
/* Nothing to do here since LCD is the only device on that bus */
}
static inline void gdisp_lld_write_index(uint16_t reg) {
static inline void write_index(uint16_t reg) {
GDISP_REG = reg;
}
static inline void gdisp_lld_write_data(uint16_t data) {
static inline void write_data(uint16_t data) {
GDISP_RAM = data;
}
static inline uint16_t gdisp_lld_read_data(void) {
static inline void setreadmode(void) {
}
static inline void setwritemode(void) {
}
static inline uint16_t read_data(void) {
return GDISP_RAM;
}
static inline void gdisp_lld_backlight(uint8_t percent) {
static inline void set_backlight(uint8_t percent) {
if(percent == 100)
palClearPad(GPIOD, GPIOD_TFT_LIGHT);
else

View File

@ -16,11 +16,11 @@
#ifndef GDISP_LLD_BOARD_H
#define GDISP_LLD_BOARD_H
static inline void gdisp_lld_init_board(void) {
static inline void init_board(void) {
}
static inline void gdisp_lld_reset_pin(bool_t state) {
static inline void setpin_reset(bool_t state) {
}
@ -32,19 +32,27 @@ static inline void release_bus(void) {
}
static inline void gdisp_lld_write_index(uint16_t data) {
static inline void write_index(uint16_t data) {
}
static inline void gdisp_lld_write_data(uint16_t data) {
static inline void write_data(uint16_t data) {
}
static inline uint16_t gdisp_lld_read_data(void) {
static inline void setreadmode(void) {
}
static inline uint16_t gdisp_lld_backlight(uint8_t percentage) {
static inline void setwritemode(void) {
}
static inline uint16_t read_data(void) {
}
static inline uint16_t set_backlight(uint8_t percentage) {
}

View File

@ -23,13 +23,11 @@
/*===========================================================================*/
#define GDISP_DRIVER_NAME "ILI9320"
#define GDISP_HARDWARE_CLEARS TRUE
#define GDISP_HARDWARE_FILLS TRUE
#define GDISP_HARDWARE_BITFILLS FALSE
#define GDISP_HARDWARE_SCROLL FALSE
#define GDISP_HARDWARE_PIXELREAD TRUE
#define GDISP_HARDWARE_CONTROL TRUE
#define GDISP_DRIVER_STRUCT GDISP_ILI9320
#define GDISP_HARDWARE_STREAM_WRITE TRUE
#define GDISP_HARDWARE_STREAM_READ TRUE
#define GDISP_HARDWARE_CONTROL TRUE
#define GDISP_PIXELFORMAT GDISP_PIXELFORMAT_RGB565