/* ChibiOS/RT - Copyright (C) 2012 Joel Bodenmann aka Tectu This file is part of ChibiOS/GFX. ChibiOS/GFX is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. ChibiOS/GFX is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifndef S6D1121_H #define S6D1121_H // I/O assignments #define GDISP_BL_GPIO GPIOB #define GDISP_BL_PIN 8 #define GDISP_CS_GPIO GPIOD #define GDISP_CS_PIN 7 #define GDISP_RS_GPIO GPIOD #define GDISP_RS_PIN 11 #define GDISP_RST_GPIO GPIOD #define GDISP_RST_PIN 10 #define GDISP_RD_GPIO GPIOD #define GDISP_RD_PIN 9 #define GDISP_WR_GPIO GPIOD #define GDISP_WR_PIN 8 #define GDISP_D0_GPIO GPIOD #define GDISP_D4_GPIO GPIOE /* all interfaces use RST via GPIO */ /* TODO: option to disable RST; assumes RST is tied high */ #define GDISP_RST_LOW palClearPad(GDISP_RST_GPIO, GDISP_RST_PIN) #define GDISP_RST_HIGH palSetPad(GDISP_RST_GPIO, GDISP_RST_PIN) #define s6d1121_delay(n) halPolledDelay(MS2RTT(n)); #if defined(GDISP_USE_GPIO) #define GDISP_CS_LOW palClearPad(GDISP_CS_GPIO, GDISP_CS_PIN) #define GDISP_CS_HIGH palSetPad(GDISP_CS_GPIO, GDISP_CS_PIN) #define GDISP_RS_LOW palClearPad(GDISP_RS_GPIO, GDISP_RS_PIN) #define GDISP_RS_HIGH palSetPad(GDISP_RS_GPIO, GDISP_RS_PIN) #define GDISP_RD_LOW palClearPad(GDISP_RD_GPIO, GDISP_RD_PIN) #define GDISP_RD_HIGH palSetPad(GDISP_RD_GPIO, GDISP_RD_PIN) #define GDISP_WR_LOW palClearPad(GDISP_WR_GPIO, GDISP_WR_PIN) #define GDISP_WR_HIGH palSetPad(GDISP_WR_GPIO, GDISP_WR_PIN) #define GDISP_BL_LOW palClearPad(GDISP_BL_GPIO, GDISP_BL_PIN) #define GDISP_BL_HIGH palSetPad(GDISP_BL_GPIO, GDISP_BL_PIN) static inline void lld_lcddelay(void) { asm volatile ("nop"); asm volatile ("nop"); } static inline void lld_lcdwrite(uint16_t db) { GDISP_D4_GPIO->BSRR.W=((~db&0xFFF0)<<16)|(db&0xFFF0); GDISP_D0_GPIO->BSRR.W=((~db&0x000F)<<16)|(db&0x000F); GDISP_WR_LOW; lld_lcddelay(); GDISP_WR_HIGH; } static __inline uint16_t lld_lcdReadData(void) { uint16_t value=0; GDISP_RS_HIGH; GDISP_WR_HIGH; GDISP_RD_LOW; #ifndef STM32F4XX // change pin mode to digital input GDISP_DATA_PORT->CRH = 0x47444444; GDISP_DATA_PORT->CRL = 0x47444444; #endif #ifndef STM32F4XX // change pin mode back to digital output GDISP_DATA_PORT->CRH = 0x33333333; GDISP_DATA_PORT->CRL = 0x33333333; #endif GDISP_RD_HIGH; return value; } static __inline uint16_t lld_lcdReadReg(uint16_t lcdReg) { uint16_t lcdRAM; GDISP_CS_LOW; GDISP_RS_LOW; lld_lcdwrite(lcdReg); GDISP_RS_HIGH; lcdRAM = lld_lcdReadData(); GDISP_CS_HIGH; return lcdRAM; } static void lld_lcdWriteIndex(uint16_t lcdReg) { GDISP_RS_LOW; lld_lcdwrite(lcdReg); GDISP_RS_HIGH; } static void lld_lcdWriteData(uint16_t lcdData) { lld_lcdwrite(lcdData); } static void lld_lcdWriteReg(uint16_t lcdReg, uint16_t lcdRegValue) { GDISP_CS_LOW; lld_lcdWriteIndex(lcdReg); lld_lcdWriteData(lcdRegValue); GDISP_CS_HIGH; } static __inline void lld_lcdWriteStreamStart(void) { GDISP_CS_LOW; lld_lcdWriteIndex(0x0022); } static __inline void lld_lcdWriteStreamStop(void) { GDISP_CS_HIGH; } static __inline void lld_lcdWriteStream(uint16_t *buffer, uint16_t size) { uint16_t i; for(i = 0; i < size; i++) { lld_lcdwrite(buffer[i]); } } static __inline void lld_lcdReadStreamStart(void) { /* TODO */ } static __inline void lld_lcdReadStreamStop(void) { /* TODO */ } static __inline void lld_lcdReadStream(uint16_t *buffer, size_t size) { (void)buffer; (void)size; /* TODO */ } #elif defined(GDISP_USE_FSMC) #define GDISP_REG (*((volatile uint16_t *) 0x60000000)) /* RS = 0 */ #define GDISP_RAM (*((volatile uint16_t *) 0x60020000)) /* RS = 1 */ static __inline void lld_lcdWriteIndex(uint16_t index) { GDISP_REG = index; } static __inline void lld_lcdWriteData(uint16_t data) { GDISP_RAM = data; } static __inline void lld_lcdWriteReg(uint16_t lcdReg,uint16_t lcdRegValue) { GDISP_REG = lcdReg; GDISP_RAM = lcdRegValue; } static __inline uint16_t lld_lcdReadData(void) { return (GDISP_RAM); } static __inline uint16_t lld_lcdReadReg(uint16_t lcdReg) { GDISP_REG = lcdReg; return GDISP_RAM; } static __inline void lld_lcdWriteStreamStart(void) { GDISP_REG = 0x0022; } static __inline void lld_lcdWriteStreamStop(void) {} static __inline void lld_lcdWriteStream(uint16_t *buffer, uint16_t size) { uint16_t i; for(i = 0; i < size; i++) GDISP_RAM = buffer[i]; } static __inline void lld_lcdReadStreamStart(void) { GDISP_REG = 0x0022; } static __inline void lld_lcdReadStreamStop(void) {} static __inline void lld_lcdReadStream(uint16_t *buffer, size_t size) { uint16_t i; volatile uint16_t dummy; /* throw away first value read */ dummy = GDISP_RAM; for(i = 0; i < size; i++) buffer[i] = GDISP_RAM; } #elif defined(GDISP_USE_SPI) #error "gdispS6d1121: GDISP_USE_SPI not implemented yet" #else #error "gdispS6d1121: No known GDISP_USE_XXX has been defined" #endif static void lld_lcdSetCursor(coord_t x, coord_t y) { /* R20h - 8 bit * R21h - 9 bit */ switch(GDISP.Orientation) { case GDISP_ROTATE_0: lld_lcdWriteReg(0x0020, x & 0x00FF); lld_lcdWriteReg(0x0021, y & 0x01FF); break; case GDISP_ROTATE_90: /* Note X has already been mirrored, so we do it directly */ lld_lcdWriteReg(0x0020, y & 0x00FF); lld_lcdWriteReg(0x0021, x & 0x01FF); break; case GDISP_ROTATE_180: lld_lcdWriteReg(0x0020, (GDISP_SCREEN_WIDTH - 1 - x) & 0x00FF); lld_lcdWriteReg(0x0021, (GDISP_SCREEN_HEIGHT - 1 - y) & 0x01FF); break; case GDISP_ROTATE_270: lld_lcdWriteReg(0x0020, (GDISP_SCREEN_WIDTH - 1 - y) & 0x00FF); lld_lcdWriteReg(0x0021, (GDISP_SCREEN_HEIGHT - 1 - x) & 0x01FF); break; } } static void lld_lcdSetViewPort(uint16_t x, uint16_t y, uint16_t cx, uint16_t cy) { /* HSA / HEA are 8 bit * VSA / VEA are 9 bit * use masks 0x00FF and 0x01FF to enforce this */ switch(GDISP.Orientation) { case GDISP_ROTATE_0: lld_lcdWriteReg(0x46, (((x + cx - 1) << 8) & 0xFF00 ) | (x & 0x00FF)); lld_lcdWriteReg(0x48, y & 0x01FF); lld_lcdWriteReg(0x47, (y + cy - 1) & 0x01FF); break; case GDISP_ROTATE_90: lld_lcdWriteReg(0x46, (((y + cy - 1) << 8) & 0xFF00) | (y & 0x00FF)); lld_lcdWriteReg(0x48, x & 0x01FF); lld_lcdWriteReg(0x47, (x + cx - 1) & 0x01FF); break; case GDISP_ROTATE_180: lld_lcdWriteReg(0x46, (((GDISP_SCREEN_WIDTH - x - 1) & 0x00FF) << 8) | ((GDISP_SCREEN_WIDTH - (x + cx)) & 0x00FF)); lld_lcdWriteReg(0x48, (GDISP_SCREEN_HEIGHT - (y + cy)) & 0x01FF); lld_lcdWriteReg(0x47, (GDISP_SCREEN_HEIGHT- y - 1) & 0x01FF); break; case GDISP_ROTATE_270: lld_lcdWriteReg(0x46, (((GDISP_SCREEN_WIDTH - y - 1) & 0x00FF) << 8) | ((GDISP_SCREEN_WIDTH - (y + cy)) & 0x00FF)); lld_lcdWriteReg(0x48, (GDISP_SCREEN_HEIGHT - (x + cx)) & 0x01FF); lld_lcdWriteReg(0x47, (GDISP_SCREEN_HEIGHT - x - 1) & 0x01FF); break; } lld_lcdSetCursor(x, y); } static void lld_lcdResetViewPort(void) { switch(GDISP.Orientation) { case GDISP_ROTATE_0: case GDISP_ROTATE_180: lld_lcdSetViewPort(0, 0, GDISP_SCREEN_WIDTH, GDISP_SCREEN_HEIGHT); break; case GDISP_ROTATE_90: case GDISP_ROTATE_270: lld_lcdSetViewPort(0, 0, GDISP_SCREEN_HEIGHT, GDISP_SCREEN_WIDTH); break; } } #endif /* S6D1121_H */