#include "ssd1289_lld.h" #ifdef LCD_USE_SSD1289 uint8_t orientation; uint16_t DeviceCode; extern uint16_t lcd_width, lcd_height; static uint16_t buf[((SCREEN_HEIGHT > SCREEN_WIDTH ) ? SCREEN_HEIGHT : SCREEN_WIDTH)]; #ifdef LCD_USE_GPIO static __inline void lld_lcdWriteIndex(uint16_t index) { Clr_RS; Set_RD; lld_lcdWriteGPIO(index); Clr_WR; Set_WR; } static __inline void lld_lcdWriteData(uint16_t data) { Set_RS; lld_lcdWriteGPIO(data); Clr_WR; Set_WR; } static __inline void lld_lcdWriteReg(uint16_t lcdReg,uint16_t lcdRegValue) { Clr_CS; lld_lcdWriteIndex(lcdReg); lld_lcdWriteData(lcdRegValue); Set_CS; } static __inline uint16_t lld_lcdReadData(void) { uint16_t value; Set_RS; Set_WR; Clr_RD; value = lld_lcdReadGPIO(); Set_RD; return value; } static __inline uint16_t lld_lcdReadReg(uint16_t lcdReg) { uint16_t lcdRAM; Clr_CS; lld_lcdWriteIndex(lcdReg); lcdRAM = lld_lcdReadData(); Set_CS; return lcdRAM; } __inline void lld_lcdWriteStreamStart(void) { Clr_CS; lld_lcdWriteIndex(0x0022); } __inline void lld_lcdWriteStreamStop(void) { Set_CS; } __inline void lld_lcdWriteStream(uint16_t *buffer, uint16_t size) { uint16_t i; Set_RS; for(i = 0; i < size; i++) { lld_lcdWriteGPIO(buffer[i]); Clr_WR; Set_WR; } } __inline void lld_lcdReadStreamStart(void) { Clr_CS lld_lcdWriteIndex(0x0022); } __inline void lld_lcdReadStreamStop(void) { Set_CS; } __inline void lld_lcdReadStream(uint16_t *buffer, size_t size) { uint16_t i; volatile uint16_t dummy; #ifdef LCD_USE_GPIO dummy = lld_lcdReadGPIO(); for(i = 0; i < size; i++) buffer[i] = lld_lcdReadGPIO(); #endif } #endif #ifdef LCD_USE_SPI /* TODO */ #endif #ifdef LCD_USE_FSMC #define LCD_REG (*((volatile uint16_t *) 0x60000000)) /* RS = 0 */ #define LCD_RAM (*((volatile uint16_t *) 0x60020000)) /* RS = 1 */ static __inline void lld_lcdWriteIndex(uint16_t index) { LCD_REG = index; } static __inline void lld_lcdWriteData(uint16_t data) { LCD_RAM = data; } static __inline void lld_lcdWriteReg(uint16_t lcdReg,uint16_t lcdRegValue) { LCD_REG = lcdReg; LCD_RAM = lcdRegValue; } static __inline uint16_t lld_lcdReadData(void) { return (LCD_RAM); } static __inline uint16_t lld_lcdReadReg(uint16_t lcdReg) { LCD_REG = lcdReg; volatile uint16_t dummy = LCD_RAM; return (LCD_RAM); } __inline void lld_lcdWriteStreamStart(void) { LCD_REG = 0x0022; } __inline void lld_lcdWriteStreamStop(void) { } __inline void lld_lcdWriteStream(uint16_t *buffer, uint16_t size) { uint16_t i; for(i = 0; i < size; i++) LCD_RAM = buffer[i]; } __inline void lld_lcdReadStreamStart(void) { LCD_REG = 0x0022; } __inline void lld_lcdReadStreamStop(void) { } __inline void lld_lcdReadStream(uint16_t *buffer, size_t size) { uint16_t i; /* throw away first value read */ volatile uint16_t dummy = LCD_RAM; for(i = 0; i < size; i++) { buffer[i] = LCD_RAM; } } #endif static __inline void lld_lcdDelay(uint16_t us) { chThdSleepMicroseconds(us); } void lld_lcdSetPowerMode(uint8_t powerMode) { switch(powerMode) { case powerOff: lld_lcdWriteReg(0x0010, 0x0000); // leave sleep mode lld_lcdWriteReg(0x0007, 0x0000); // halt operation lld_lcdWriteReg(0x0000, 0x0000); // turn off oszillator lld_lcdWriteReg(0x0010, 0x0001); // enter sleepmode break; case powerOn: lld_lcdWriteReg(0x0010, 0x0000); // leave sleep mode lld_lcdInit(); break; case sleepOn: lld_lcdWriteReg(0x0010, 0x0001); // enter sleep mode break; case sleepOff: lld_lcdWriteReg(0x0010, 0x0000); // leave sleep mode break; } } void lld_lcdSetCursor(uint16_t x, uint16_t y) { /* Reg 0x004E is an 8 bit value * Reg 0x004F is 9 bit * Use a bit mask to make sure they are not set too high */ if(PORTRAIT) { lld_lcdWriteReg(0x004e, x & 0x00FF); lld_lcdWriteReg(0x004f, y & 0x01FF); } else if(LANDSCAPE) { lld_lcdWriteReg(0x004e, y & 0x00FF); lld_lcdWriteReg(0x004f, x & 0x01FF); } } void lld_lcdSetOrientation(uint8_t newOrientation) { orientation = newOrientation; switch(orientation) { case portrait: lld_lcdWriteReg(0x0001, 0x2B3F); lld_lcdWriteReg(0x0011, 0x6070); lcd_height = SCREEN_HEIGHT; lcd_width = SCREEN_WIDTH; break; case landscape: lld_lcdWriteReg(0x0001, 0x293F); lld_lcdWriteReg(0x0011, 0x6078); lcd_height = SCREEN_WIDTH; lcd_width = SCREEN_HEIGHT; break; case portraitInv: lld_lcdWriteReg(0x0001, 0x693F); lld_lcdWriteReg(0x0011, 0x6040); lcd_height = SCREEN_HEIGHT; lcd_width = SCREEN_WIDTH; break; case landscapeInv: lld_lcdWriteReg(0x0001, 0x6B3F); lld_lcdWriteReg(0x0011, 0x6048); lcd_height = SCREEN_WIDTH; lcd_width = SCREEN_HEIGHT; break; } } void lld_lcdSetWindow(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1) { lld_lcdSetCursor(x0, y0); /* Reg 0x44 - Horizontal RAM address position * Upper Byte - HEA * Lower Byte - HSA * 0 <= HSA <= HEA <= 0xEF * Reg 0x45,0x46 - Vertical RAM address position * Lower 9 bits gives 0-511 range in each value * 0 <= Reg(0x45) <= Reg(0x46) <= 0x13F */ switch(lcdGetOrientation()) { case portrait: lld_lcdWriteReg(0x44, (((x1-1) << 8) & 0xFF00 ) | (x0 & 0x00FF)); lld_lcdWriteReg(0x45, y0 & 0x01FF); lld_lcdWriteReg(0x46, (y1-1) & 0x01FF); break; case landscape: lld_lcdWriteReg(0x44, (((y1-1) << 8) & 0xFF00) | (y1 & 0x00FF)); lld_lcdWriteReg(0x45, x0 & 0x01FF); lld_lcdWriteReg(0x46, (x1-1) & 0x01FF); break; case portraitInv: lld_lcdWriteReg(0x44, (((x1-1) << 8) & 0xFF00) | (x0 & 0x00FF)); lld_lcdWriteReg(0x45, y0 & 0x01FF); lld_lcdWriteReg(0x46, (y1-1) & 0x01FF); break; case landscapeInv: lld_lcdWriteReg(0x44, (((y1-1) << 8) & 0xFF00) | (y1 & 0x00FF)); lld_lcdWriteReg(0x45, x0 & 0x01FF); lld_lcdWriteReg(0x46, (x1-1) & 0x01FF); break; } } void lld_lcdFillArea(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, uint16_t color) { uint32_t index = 0, area; area = ((x1-x0)*(y1-y0)); lld_lcdSetWindow(x0, y0, x1, y1); lld_lcdWriteStreamStart(); for(index = 0; index < area; index++) lld_lcdWriteData(color); lld_lcdWriteStreamStop(); } void lld_lcdClear(uint16_t color) { uint32_t index = 0; lld_lcdSetCursor(0, 0); lld_lcdWriteStreamStart(); for(index = 0; index < SCREEN_WIDTH * SCREEN_HEIGHT; index++) lld_lcdWriteData(color); lld_lcdWriteStreamStop(); } uint16_t lld_lcdGetPixelColor(uint16_t x, uint16_t y) { uint16_t dummy; lld_lcdSetCursor(x,y); lld_lcdWriteStreamStart(); dummy = lld_lcdReadData(); dummy = lld_lcdReadData(); lld_lcdWriteStreamStop(); return dummy; } void lld_lcdDrawPixel(uint16_t x, uint16_t y, uint16_t color) { lld_lcdSetCursor(x, y); lld_lcdWriteReg(0x0022, color); } void lld_lcdInit(void) { #ifdef LCD_USE_FSMC /* FSMC setup. TODO: this only works for STM32F1 */ rccEnableAHB(RCC_AHBENR_FSMCEN, 0); int FSMC_Bank = 0; /* timing structure */ /* from datasheet: address setup: 0ns address hold: 0ns Data setup: 5ns Data hold: 5ns Data access: 250ns output hold: 100ns */ FSMC_Bank1->BTCR[FSMC_Bank+1] = FSMC_BTR1_ADDSET_1 | FSMC_BTR1_DATAST_1; /* Bank1 NOR/SRAM control register configuration */ FSMC_Bank1->BTCR[FSMC_Bank] = FSMC_BCR1_MWID_0 | FSMC_BCR1_WREN | FSMC_BCR1_MBKEN; #endif DeviceCode = lld_lcdReadReg(0x0000); lld_lcdWriteReg(0x0000,0x0001); lld_lcdDelay(5); lld_lcdWriteReg(0x0003,0xA8A4); lld_lcdDelay(5); lld_lcdWriteReg(0x000C,0x0000); lld_lcdDelay(5); lld_lcdWriteReg(0x000D,0x080C); lld_lcdDelay(5); lld_lcdWriteReg(0x000E,0x2B00); lld_lcdDelay(5); lld_lcdWriteReg(0x001E,0x00B0); lld_lcdDelay(5); lld_lcdWriteReg(0x0001,0x2B3F); lld_lcdDelay(5); lld_lcdWriteReg(0x0002,0x0600); lld_lcdDelay(5); lld_lcdWriteReg(0x0010,0x0000); lld_lcdDelay(5); lld_lcdWriteReg(0x0011,0x6070); lld_lcdDelay(5); lld_lcdWriteReg(0x0005,0x0000); lld_lcdDelay(5); lld_lcdWriteReg(0x0006,0x0000); lld_lcdDelay(5); lld_lcdWriteReg(0x0016,0xEF1C); lld_lcdDelay(5); lld_lcdWriteReg(0x0017,0x0003); lld_lcdDelay(5); lld_lcdWriteReg(0x0007,0x0133); lld_lcdDelay(5); lld_lcdWriteReg(0x000B,0x0000); lld_lcdDelay(5); lld_lcdWriteReg(0x000F,0x0000); lld_lcdDelay(5); lld_lcdWriteReg(0x0041,0x0000); lld_lcdDelay(5); lld_lcdWriteReg(0x0042,0x0000); lld_lcdDelay(5); lld_lcdWriteReg(0x0048,0x0000); lld_lcdDelay(5); lld_lcdWriteReg(0x0049,0x013F); lld_lcdDelay(5); lld_lcdWriteReg(0x004A,0x0000); lld_lcdDelay(5); lld_lcdWriteReg(0x004B,0x0000); lld_lcdDelay(5); lld_lcdWriteReg(0x0044,0xEF00); lld_lcdDelay(5); lld_lcdWriteReg(0x0045,0x0000); lld_lcdDelay(5); lld_lcdWriteReg(0x0046,0x013F); lld_lcdDelay(5); lld_lcdWriteReg(0x0030,0x0707); lld_lcdDelay(5); lld_lcdWriteReg(0x0031,0x0204); lld_lcdDelay(5); lld_lcdWriteReg(0x0032,0x0204); lld_lcdDelay(5); lld_lcdWriteReg(0x0033,0x0502); lld_lcdDelay(5); lld_lcdWriteReg(0x0034,0x0507); lld_lcdDelay(5); lld_lcdWriteReg(0x0035,0x0204); lld_lcdDelay(5); lld_lcdWriteReg(0x0036,0x0204); lld_lcdDelay(5); lld_lcdWriteReg(0x0037,0x0502); lld_lcdDelay(5); lld_lcdWriteReg(0x003A,0x0302); lld_lcdDelay(5); lld_lcdWriteReg(0x003B,0x0302); lld_lcdDelay(5); lld_lcdWriteReg(0x0023,0x0000); lld_lcdDelay(5); lld_lcdWriteReg(0x0024,0x0000); lld_lcdDelay(5); lld_lcdWriteReg(0x0025,0x8000); lld_lcdDelay(5); lld_lcdWriteReg(0x004f,0x0000); lld_lcdDelay(5); lld_lcdWriteReg(0x004e,0x0000); lld_lcdDelay(5); } uint16_t lld_lcdGetOrientation(void) { return orientation; } uint16_t lld_lcdGetHeight(void) { return lcd_height; } uint16_t lld_lcdGetWidth(void) { return lcd_width; } /* a positive lines value shifts the screen up, negative down */ void lld_lcdVerticalScroll(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, uint16_t lines) { uint16_t row0, row1; uint16_t i; lld_lcdSetWindow(x0, y0, x1, y1); for(i = 0; i < ((y1-y0) - abs(lines)); i++) { if(lines > 0) { row0 = y0 + i + lines; row1 = y0 + i; } else { row0 = (y1 - i - 1) + lines; row1 = (y1 - i - 1); } /* read row0 into the buffer and then write at row1*/ lld_lcdSetWindow(x0, row0, x1, row0); lld_lcdReadStreamStart(); lld_lcdReadStream(buf, x1-x0); lld_lcdReadStreamStop(); lld_lcdSetWindow(x0, row1, x1, row1); lld_lcdWriteStreamStart(); lld_lcdWriteStream(buf, x1-x0); lld_lcdWriteStreamStop(); } } #endif