#include "s6d1121_lld.h" #ifdef LCD_USE_S6D1121 #define LCD_RST_LOW palClearPad(LCD_RST_GPIO, LCD_RST_PIN) #define LCD_RST_HIGH palSetPad(LCD_RST_GPIO, LCD_RST_PIN) #define LCD_CS_LOW palClearPad(LCD_CS_GPIO, LCD_CS_PIN) #define LCD_CS_HIGH palSetPad(LCD_CS_GPIO, LCD_CS_PIN) #define LCD_RS_LOW palClearPad(LCD_RS_GPIO, LCD_RS_PIN) #define LCD_RS_HIGH palSetPad(LCD_RS_GPIO, LCD_RS_PIN) #define LCD_RD_LOW palClearPad(LCD_RD_GPIO, LCD_RD_PIN) #define LCD_RD_HIGH palSetPad(LCD_RD_GPIO, LCD_RD_PIN) #define LCD_WR_LOW palClearPad(LCD_WR_GPIO, LCD_WR_PIN) #define LCD_WR_HIGH palSetPad(LCD_WR_GPIO, LCD_WR_PIN) #define LCD_BL_LOW palClearPad(LCD_BL_GPIO, LCD_BL_PIN) #define LCD_BL_HIGH palSetPad(LCD_BL_GPIO, LCD_BL_PIN) static uint8_t orientation; extern uint16_t lcd_width, lcd_height; static inline void lld_lcddelay(void) { asm volatile ("nop"); asm volatile ("nop"); } static inline void lld_lcdwrite(uint16_t db) { LCD_D4_GPIO->BSRR.W=((~db&0xFFF0)<<16)|(db&0xFFF0); LCD_D0_GPIO->BSRR.W=((~db&0x000F)<<16)|(db&0x000F); LCD_WR_LOW; lld_lcddelay(); LCD_WR_HIGH; } static __inline uint16_t lld_lcdReadData(void) { uint16_t value=0; LCD_RS_HIGH; LCD_WR_HIGH; LCD_RD_LOW; #ifndef STM32F4XX // change pin mode to digital input LCD_DATA_PORT->CRH = 0x47444444; LCD_DATA_PORT->CRL = 0x47444444; #else #endif // value = palReadPort(LCD_DATA_PORT); // dummy // value = palReadPort(LCD_DATA_PORT); #ifndef STM32F4XX // change pin mode back to digital output LCD_DATA_PORT->CRH = 0x33333333; LCD_DATA_PORT->CRL = 0x33333333; #else #endif LCD_RD_HIGH; return value; } static __inline uint16_t lld_lcdReadReg(uint16_t lcdReg) { uint16_t lcdRAM; LCD_CS_LOW; LCD_RS_LOW; lld_lcdwrite(lcdReg); LCD_RS_HIGH; lcdRAM = lld_lcdReadData(); LCD_CS_HIGH; return lcdRAM; } void lld_lcdWriteIndex(uint16_t lcdReg) { LCD_RS_LOW; lld_lcdwrite(lcdReg); LCD_RS_HIGH; } void lld_lcdWriteData(uint16_t lcdData) { lld_lcdwrite(lcdData); } void lcdWriteReg(uint16_t lcdReg, uint16_t lcdRegValue) { LCD_CS_LOW; lld_lcdWriteIndex(lcdReg); lld_lcdWriteData(lcdRegValue); LCD_CS_HIGH; } void lld_lcdInit(void) { // ChibiOS HAL has a nice and precise delay function, // halPolledDelay(US2RTT(x)); or halPolledDelay(MS2RTT(x)); // Why Not use it? // IO Default Configurations palSetPadMode(LCD_CS_GPIO, LCD_CS_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST); palSetPadMode(LCD_WR_GPIO, LCD_WR_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST); palSetPadMode(LCD_RD_GPIO, LCD_RD_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST); palSetPadMode(LCD_RST_GPIO, LCD_RST_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST); palSetPadMode(LCD_RS_GPIO, LCD_RS_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST); palSetPadMode(LCD_BL_GPIO, LCD_BL_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST); palSetGroupMode(LCD_D0_GPIO, 0x0000000F, 0, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST); palSetGroupMode(LCD_D4_GPIO, 0x0000FFF0, 0, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST); LCD_CS_HIGH; LCD_RST_HIGH; LCD_RD_HIGH; LCD_WR_HIGH; LCD_BL_LOW; // A Good idea to reset the module before using LCD_RST_LOW; halPolledDelay(MS2RTT(2)); LCD_RST_HIGH; // Hardware Reset halPolledDelay(MS2RTT(2)); lcdWriteReg(0x11,0x2004); lcdWriteReg(0x13,0xCC00); lcdWriteReg(0x15,0x2600); lcdWriteReg(0x14,0x252A); lcdWriteReg(0x12,0x0033); lcdWriteReg(0x13,0xCC04); halPolledDelay(MS2RTT(1)); lcdWriteReg(0x13,0xCC06); halPolledDelay(MS2RTT(1)); lcdWriteReg(0x13,0xCC4F); halPolledDelay(MS2RTT(1)); lcdWriteReg(0x13,0x674F); lcdWriteReg(0x11,0x2003); halPolledDelay(MS2RTT(1)); // Gamma Setting lcdWriteReg(0x30,0x2609); lcdWriteReg(0x31,0x242C); lcdWriteReg(0x32,0x1F23); lcdWriteReg(0x33,0x2425); lcdWriteReg(0x34,0x2226); lcdWriteReg(0x35,0x2523); lcdWriteReg(0x36,0x1C1A); lcdWriteReg(0x37,0x131D); lcdWriteReg(0x38,0x0B11); lcdWriteReg(0x39,0x1210); lcdWriteReg(0x3A,0x1315); lcdWriteReg(0x3B,0x3619); lcdWriteReg(0x3C,0x0D00); lcdWriteReg(0x3D,0x000D); lcdWriteReg(0x16,0x0007); lcdWriteReg(0x02,0x0013); lcdWriteReg(0x03,0x0003); lcdWriteReg(0x01,0x0127); halPolledDelay(MS2RTT(1)); lcdWriteReg(0x08,0x0303); lcdWriteReg(0x0A,0x000B); lcdWriteReg(0x0B,0x0003); lcdWriteReg(0x0C,0x0000); lcdWriteReg(0x41,0x0000); lcdWriteReg(0x50,0x0000); lcdWriteReg(0x60,0x0005); lcdWriteReg(0x70,0x000B); lcdWriteReg(0x71,0x0000); lcdWriteReg(0x78,0x0000); lcdWriteReg(0x7A,0x0000); lcdWriteReg(0x79,0x0007); lcdWriteReg(0x07,0x0051); halPolledDelay(MS2RTT(1)); lcdWriteReg(0x07,0x0053); lcdWriteReg(0x79,0x0000); } void lld_lcdSetCursor(uint16_t x, uint16_t y) { if(PORTRAIT) { lcdWriteReg(0x0020, x); lcdWriteReg(0x0021, y); } else if(LANDSCAPE) { lcdWriteReg(0x0020, y); lcdWriteReg(0x0021, x); } } static __inline void lld_lcdWriteStreamStart(void) { #ifdef LCD_USE_GPIO LCD_CS_LOW; lld_lcdWriteIndex(0x0022); #endif #ifdef LCD_USE_SPI #endif #ifdef LCD_USE_FSMC #endif } static __inline void lld_lcdWriteStreamStop(void) { #ifdef LCD_USE_GPIO LCD_CS_HIGH; #endif #ifdef LCD_USE_SPI #endif #ifdef LCD_USE_FSMC #endif } __inline void lld_lcdWriteStream(uint16_t *buffer, uint16_t size) { uint16_t i; for(i = 0; i < size; i++) { lld_lcdwrite(buffer[i]); } } void lld_lcdFillArea(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, uint16_t color) { uint32_t index = 0, area; area = ((x1-x0)*(y1-y0)); lld_lcdSetWindow(x0, y0, x1, y1); lld_lcdWriteStreamStart(); for(index = 0; index < area; index++) lld_lcdWriteData(color); lld_lcdWriteStreamStop(); } // Do not use now, will be fixed in future void lld_lcdSetOrientation(uint8_t newOrientation) { orientation = newOrientation; switch(orientation) { case portrait: lcdWriteReg(0x03, 0x03); lcd_height = SCREEN_HEIGHT; lcd_width = SCREEN_WIDTH; break; case landscape: // Not implemented yet lcd_height = SCREEN_WIDTH; lcd_width = SCREEN_HEIGHT; break; case portraitInv: // Not implemented yet lcd_height = SCREEN_HEIGHT; lcd_width = SCREEN_WIDTH; break; case landscapeInv: // Not implemented yet lcd_height = SCREEN_WIDTH; lcd_width = SCREEN_HEIGHT; break; } } void lld_lcdSetWindow(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1) { switch(lcdGetOrientation()) { case portrait: lcdWriteReg(0x46, ((x1-1) << 8) | x0); lcdWriteReg(0x48, y0); lcdWriteReg(0x47, y1-1); break; case landscape: lcdWriteReg(0x46, ((x0-1) << 8) | x1); lcdWriteReg(0x48, x0); lcdWriteReg(0x47, x1-1); break; case portraitInv: lcdWriteReg(0x46, ((x1-1) << 8) | x0); lcdWriteReg(0x48, y0); lcdWriteReg(0x47, y1-1); break; case landscapeInv: lcdWriteReg(0x46, ((y0-1) << 8) | y1); lcdWriteReg(0x48, x0); lcdWriteReg(0x47, x1-1); break; } lld_lcdSetCursor(x0, y0); } void lld_lcdClear(uint16_t color) { uint32_t index = 0; lld_lcdSetCursor(0,0); LCD_CS_LOW; lld_lcdWriteIndex(0x0022); for(index = 0; index < SCREEN_WIDTH * SCREEN_HEIGHT; index++) lld_lcdWriteData(color); LCD_CS_HIGH; } // Do not use! uint16_t lld_lcdGetPixelColor(uint16_t x, uint16_t y) { uint16_t dummy; lld_lcdSetCursor(x,y); LCD_CS_LOW; lld_lcdWriteIndex(0x0022); dummy = lld_lcdReadData(); dummy = lld_lcdReadData(); LCD_CS_HIGH; return dummy; } void lld_lcdDrawPixel(uint16_t x, uint16_t y, uint16_t color) { lld_lcdSetCursor(x, y); lcdWriteReg(0x0022, color); } uint16_t lld_lcdGetOrientation(void) { return orientation; } uint16_t lld_lcdGetHeight(void) { return lcd_height; } uint16_t lld_lcdGetWidth(void) { return lcd_width; } #endif