ugfx/src/ginput/ginput_keyboard.c

581 lines
15 KiB
C

/*
* This file is subject to the terms of the GFX License. If a copy of
* the license was not distributed with this file, you can obtain one at:
*
* http://ugfx.org/license.html
*/
/**
* @file src/ginput/ginput_keyboard.c
* @brief GINPUT keyboard code.
*/
// We need to include stdio.h below for MICROCODE_DEBUG. Turn off GFILE_NEED_STDIO just for this file to prevent conflicts
#define GFILE_NEED_STDIO_MUST_BE_OFF
#include "../../gfx.h"
#if GFX_USE_GINPUT && GINPUT_NEED_KEYBOARD
#define MICROCODE_DEBUG FALSE
#if MICROCODE_DEBUG
#include <stdio.h>
#endif
// Get the keyboard driver interface
#include "ginput_driver_keyboard.h"
#include "ginput_keyboard_microcode.h"
// The keyboard poll timer
static GTIMER_DECL(KeyboardTimer);
static void SendKeyboardEventToListener(GSourceListener *psl, GKeyboard *k) {
GEventKeyboard *pe;
int i;
// If there is no event buffer just mark a missed event
if (!(pe = (GEventKeyboard *)geventGetEventBuffer(psl))) {
// This listener is missing - save the meta events that have happened
psl->srcflags |= GKEYSTATE_MISSED_EVENT;
return;
}
if ((psl->listenflags & GLISTEN_KEYRAW)) {
pe->type = GEVENT_KEYBOARD;
pe->bytecount = k->cntsc;
for(i = 0; i < k->cntsc; i++) pe->c[i] = k->sc[i];
for(; i < 8; i++) pe->c[i] = 0;
pe->keystate = k->keystate | psl->srcflags | GKEYSTATE_RAW;
psl->srcflags = 0;
return;
}
if ((psl->listenflags & GLISTEN_KEYREPEATSOFF) && (k->keystate & GKEYSTATE_REPEAT))
return;
if ((psl->listenflags & GLISTEN_KEYNOSPECIALS) && (k->keystate & GKEYSTATE_SPECIAL))
return;
if (!(psl->listenflags & GLISTEN_KEYUP) && (k->keystate & GKEYSTATE_KEYUP))
k->cntc = 0;
if (!(psl->listenflags & GLISTEN_KEYTRANSITIONS) && !k->cntc)
return;
pe->type = GEVENT_KEYBOARD;
pe->bytecount = k->cntc;
for(i = 0; i < k->cntc; i++) pe->c[i] = k->c[i];
for(; i < 8; i++) pe->c[i] = 0;
pe->keystate = k->keystate | psl->srcflags;
psl->srcflags = 0;
geventSendEvent(psl);
}
static void SendKeyboardEvent(GKeyboard *k) {
GSourceListener *psl;
// Send to the "All Keyboards" source listeners
psl = 0;
while ((psl = geventGetSourceListener((GSourceHandle)&KeyboardTimer, psl)))
SendKeyboardEventToListener(psl, k);
// Send to the keyboard specific source listeners
psl = 0;
while ((psl = geventGetSourceListener((GSourceHandle)k, psl)))
SendKeyboardEventToListener(psl, k);
}
#define FLAG_ERROR 0x01
#define FLAG_INIT 0x02
#if GKEYBOARD_LAYOUT_OFF
static void microengine(GKeyboard *k, uint8_t code, uint8_t flags) {
if (flags)
return;
// Just send an event using the char
k->c[0] = k->sc[0] = code;
k->cntc = k->cntsc = 1;
SendKeyboardEvent(k);
k->cntc = k->cntsc = 0;
}
#else
static void microengine(GKeyboard *k, uint8_t code, uint8_t flags) {
const uint8_t *pc;
const uint8_t *nrec;
uint8_t ver, diff, p1, p2;
#if MICROCODE_DEBUG
unsigned cnt;
#endif
pc = k->pLayout;
if (!pc) {
if (flags)
return;
// Default is to just send an event using the char
k->c[0] = k->sc[0] = code;
k->cntc = k->cntsc = 1;
SendKeyboardEvent(k);
k->cntc = k->cntsc = 0;
return;
}
// Check the layout header
if (*pc++ != KMC_HEADERSTART || *pc++ != KMC_HEADER_ID1 || *pc++ != KMC_HEADER_ID2)
return;
// We only understand version 1 currently
ver = *pc++;
if (ver < KMC_HEADER_VER_MIN || ver > KMC_HEADER_VER_MAX)
return;
// Setup
diff = code;
if (k->cntsc >= sizeof(k->sc))
flags |= FLAG_ERROR;
else
k->sc[k->cntsc++] = code;
#if MICROCODE_DEBUG
cnt = 0;
#endif
while(*pc++ == KMC_RECORDSTART) {
// Get the record length
p1 = *pc++;
if (!p1) break;
nrec = pc + p1;
#if MICROCODE_DEBUG
cnt++;
#endif
while(pc < nrec) {
switch(*pc++) {
case KMC_TEST_INIT:
if (!(flags & FLAG_INIT)) goto nextrecord;
break;
case KMC_TEST_ERROR:
if (!(flags & FLAG_ERROR)) goto nextrecord;
break;
case KMC_TEST_CODE:
if (flags != 0) goto nextrecord;
p1 = *pc++;
if (p1 != code) goto nextrecord;
diff = 0;
break;
case KMC_TEST_CODERANGE:
if (flags != 0) goto nextrecord;
p1 = *pc++;
p2 = *pc++;
if (code < p1 || code > p2) goto nextrecord;
diff = code - p1;
break;
case KMC_TEST_CODETABLE:
if (flags != 0) goto nextrecord;
p1 = *pc++;
for(p2 = 0; ; p2++, p1--, pc++) {
if (!p1) goto nextrecord;
if (*pc == code) break;
}
pc += p1;
diff = p2;
break;
case KMC_TEST_STATEBIT:
p1 = *pc++;
if ((p1 & KMC_BIT_CLEAR)) {
if ((k->keystate & (1 << (p1 & 31)))) goto nextrecord;
} else {
if (!(k->keystate & (1 << (p1 & 31)))) goto nextrecord;
}
break;
case KMC_TEST_STATEOR:
p1 = *pc++;
if ((p1 & KMC_BIT_CLEAR)) {
if (!(k->keystate & (1 << (p1 & 31)))) break;
} else {
if ((k->keystate & (1 << (p1 & 31)))) break;
}
p2 = *pc++;
if ((p2 & KMC_BIT_CLEAR)) {
if (!(k->keystate & (1 << (p2 & 31)))) break;
} else {
if ((k->keystate & (1 << (p2 & 31)))) break;
}
goto nextrecord;
case KMC_TEST_STATEAND:
p1 = *pc++;
if ((p1 & KMC_BIT_CLEAR)) {
if ((k->keystate & (1 << (p1 & 31)))) goto nextrecord;
} else {
if (!(k->keystate & (1 << (p1 & 31)))) goto nextrecord;
}
p2 = *pc++;
if ((p2 & KMC_BIT_CLEAR)) {
if ((k->keystate & (1 << (p2 & 31)))) goto nextrecord;
} else {
if (!(k->keystate & (1 << (p2 & 31)))) goto nextrecord;
}
break;
case KMC_TEST_LAYOUTBIT:
p1 = *pc++;
if ((p1 & KMC_BIT_CLEAR)) {
if ((k->laystate & (1 << (p1 & 15)))) goto nextrecord;
} else {
if (!(k->laystate & (1 << (p1 & 15)))) goto nextrecord;
}
break;
case KMC_TEST_LAYOUTOR:
p1 = *pc++;
if ((p1 & KMC_BIT_CLEAR)) {
if (!(k->laystate & (1 << (p1 & 15)))) break;
} else {
if ((k->laystate & (1 << (p1 & 15)))) break;
}
p2 = *pc++;
if ((p2 & KMC_BIT_CLEAR)) {
if (!(k->laystate & (1 << (p2 & 15)))) break;
} else {
if ((k->laystate & (1 << (p2 & 15)))) break;
}
goto nextrecord;
case KMC_TEST_LAYOUTAND:
p1 = *pc++;
if ((p1 & KMC_BIT_CLEAR)) {
if ((k->laystate & (1 << (p1 & 15)))) goto nextrecord;
} else {
if (!(k->laystate & (1 << (p1 & 15)))) goto nextrecord;
}
p2 = *pc++;
if ((p2 & KMC_BIT_CLEAR)) {
if ((k->laystate & (1 << (p2 & 15)))) goto nextrecord;
} else {
if (!(k->laystate & (1 << (p2 & 15)))) goto nextrecord;
}
break;
case KMC_TEST_CODEBIT:
if (flags != 0) goto nextrecord;
p1 = *pc++;
if ((p1 & KMC_BIT_CLEAR)) {
if ((code & (1 << (p1 & 7)))) goto nextrecord;
} else {
if (!(code & (1 << (p1 & 7)))) goto nextrecord;
}
break;
case KMC_TEST_CODEOR:
if (flags != 0) goto nextrecord;
p1 = *pc++;
if ((p1 & KMC_BIT_CLEAR)) {
if (!(code & (1 << (p1 & 7)))) break;
} else {
if ((code & (1 << (p1 & 7)))) break;
}
p2 = *pc++;
if ((p2 & KMC_BIT_CLEAR)) {
if (!(code & (1 << (p2 & 7)))) break;
} else {
if ((code & (1 << (p2 & 7)))) break;
}
goto nextrecord;
case KMC_TEST_CODEAND:
if (flags != 0) goto nextrecord;
p1 = *pc++;
if ((p1 & KMC_BIT_CLEAR)) {
if ((code & (1 << (p1 & 7)))) goto nextrecord;
} else {
if (!(code & (1 << (p1 & 7)))) goto nextrecord;
}
p2 = *pc++;
if ((p2 & KMC_BIT_CLEAR)) {
if ((code & (1 << (p2 & 7)))) goto nextrecord;
} else {
if (!(code & (1 << (p2 & 7)))) goto nextrecord;
}
break;
case KMC_TEST_LASTCODE:
p1 = *pc++;
if (k->cntsc < 2) goto nextrecord;
if (p1 != k->sc[k->cntsc-2]) goto nextrecord;
break;
case KMC_TEST_SHIFT:
if ((k->keystate & (GKEYSTATE_SHIFT_L|GKEYSTATE_SHIFT_R))) break;
goto nextrecord;
case KMC_TEST_NOSHIFT:
if (!(k->keystate & (GKEYSTATE_SHIFT_L|GKEYSTATE_SHIFT_R))) break;
goto nextrecord;
case KMC_TEST_CTRL:
if ((k->keystate & (GKEYSTATE_CTRL_L|GKEYSTATE_CTRL_R))) break;
goto nextrecord;
case KMC_TEST_NOCTRL:
if (!(k->keystate & (GKEYSTATE_CTRL_L|GKEYSTATE_CTRL_R))) break;
goto nextrecord;
case KMC_TEST_ALT:
if ((k->keystate & (GKEYSTATE_ALT_L|GKEYSTATE_ALT_R))) break;
goto nextrecord;
case KMC_TEST_NOALT:
if (!(k->keystate & (GKEYSTATE_ALT_L|GKEYSTATE_ALT_R))) break;
goto nextrecord;
case KMC_TEST_CAPS:
if ((k->keystate & GKEYSTATE_CAPSLOCK)) {
if (!(k->keystate & (GKEYSTATE_SHIFT_L|GKEYSTATE_SHIFT_R))) break;
} else {
if ((k->keystate & (GKEYSTATE_SHIFT_L|GKEYSTATE_SHIFT_R))) break;
}
goto nextrecord;
case KMC_TEST_NOCAPS:
if ((k->keystate & GKEYSTATE_CAPSLOCK)) {
if ((k->keystate & (GKEYSTATE_SHIFT_L|GKEYSTATE_SHIFT_R))) break;
} else {
if (!(k->keystate & (GKEYSTATE_SHIFT_L|GKEYSTATE_SHIFT_R))) break;
}
goto nextrecord;
case KMC_TEST_NUMLOCK:
if ((k->keystate & GKEYSTATE_NUMLOCK)) break;
goto nextrecord;
case KMC_TEST_NONUMLOCK:
if (!(k->keystate & GKEYSTATE_NUMLOCK)) break;
goto nextrecord;
case KMC_ACT_STOP:
#if MICROCODE_DEBUG
fprintf(stderr, "Executed STOP: Records=%2u Flags=0x%02X Code=0x%02X\n", cnt, flags, code); fflush(stderr);
#endif
return;
case KMC_ACT_DONE:
SendKeyboardEvent(k);
k->cntc = k->cntsc = 0;
k->keystate &= ~(GKEYSTATE_KEYUP|GKEYSTATE_SPECIAL);
#if MICROCODE_DEBUG
fprintf(stderr, "Executed DONE: Records=%2u Flags=0x%02X Code=0x%02X\n", cnt, flags, code); fflush(stderr);
#endif
return;
case KMC_ACT_RESET:
k->cntc = k->cntsc = 0;
k->keystate &= ~(GKEYSTATE_KEYUP|GKEYSTATE_SPECIAL);
break;
case KMC_ACT_STATEBIT:
p1 = *pc++;
if ((p1 & KMC_BIT_INVERT))
k->keystate ^= (1 << (p1 & 31));
else if ((p1 & KMC_BIT_CLEAR))
k->keystate &= ~(1 << (p1 & 31));
else
k->keystate |= (1 << (p1 & 31));
break;
case KMC_ACT_LAYOUTBIT:
p1 = *pc++;
if ((p1 & KMC_BIT_INVERT))
k->laystate ^= (1 << (p1 & 15));
else if ((p1 & KMC_BIT_CLEAR))
k->laystate &= ~(1 << (p1 & 15));
else
k->laystate |= (1 << (p1 & 15));
break;
case KMC_ACT_CODEBIT:
p1 = *pc++;
if ((p1 & KMC_BIT_INVERT))
code ^= (1 << (p1 & 7));
else if ((p1 & KMC_BIT_CLEAR))
code &= ~(1 << (p1 & 7));
else
code |= (1 << (p1 & 7));
break;
case KMC_ACT_CHAR:
if (k->cntc >= sizeof(k->c)) goto codeerror;
k->c[k->cntc++] = *pc++;
break;
case KMC_ACT_CHARCODE:
if (k->cntc >= sizeof(k->c)) goto codeerror;
k->c[k->cntc++] = code;
break;
case KMC_ACT_CHARRANGE:
if (k->cntc >= sizeof(k->c)) goto codeerror;
k->c[k->cntc++] = diff + *pc++;
break;
case KMC_ACT_CHARTABLE:
p1 = *pc++;
if (diff < p1) {
if (k->cntc >= sizeof(k->c)) goto codeerror;
k->c[k->cntc++] = pc[diff];
}
pc += p1;
break;
case KMC_ACT_CLEAR:
k->cntc = 0;
break;
case KMC_ACT_CHARADD:
p1 = *pc++;
if (!k->cntc)
k->c[k->cntc++] = 0;
k->c[k->cntc-1] = k->c[k->cntc-1] * p1 + diff;
break;
case KMC_ACT_DATA:
p1 = *pc++;
if (gkvmt(k)->putdata)
gkvmt(k)->putdata(k, p1);
break;
default:
codeerror:
#if MICROCODE_DEBUG
fprintf(stderr, "Executed ERROR: Records=%2u Flags=0x%02X Code=0x%02X\n", cnt, flags, code); cnt = 0; fflush(stderr);
#endif
// Prevent recursion
if (flags & FLAG_ERROR)
return;
// Process as an error
flags |= FLAG_ERROR;
nrec = k->pLayout + 4; // Jump back to the end of the header to process the error
goto nextrecord; // Nothing left to do here.
}
}
nextrecord:
pc = nrec;
}
#if MICROCODE_DEBUG
fprintf(stderr, "Executed END: Records=%2u Flags=0x%02X Code=0x%02X\n", cnt, flags, code); fflush(stderr);
#endif
}
#endif
static void KeyboardPoll(void *param) {
GKeyboard * k;
uint8_t scancodes[8];
int sz, i;
(void) param;
for(k = (GKeyboard *)gdriverGetNext(GDRIVER_TYPE_KEYBOARD, 0); k; k = (GKeyboard *)gdriverGetNext(GDRIVER_TYPE_KEYBOARD, (GDriver *)k)) {
if (!(gkvmt(k)->d.flags & GKEYBOARD_VFLG_NOPOLL) || (k->flags & GKEYBOARD_FLG_NEEDREAD)) {
k->flags &= ~GKEYBOARD_FLG_NEEDREAD;
sz = gkvmt(k)->getdata(k, scancodes, sizeof(scancodes));
for(i = 0; i < sz; i++)
microengine(k, scancodes[i], 0);
}
}
}
void _gkeyboardInit(void) {
// GINPUT_KEYBOARD_DRIVER_LIST is defined - create each driver instance
#if defined(GINPUT_KEYBOARD_DRIVER_LIST)
{
int i;
typedef const GKeyboardVMT const GKEYBOARDVMTLIST[1];
extern GKEYBOARDVMTLIST GINPUT_KEYBOARD_DRIVER_LIST;
static const GKeyboardVMT * const dclist[] = {GINPUT_KEYBOARD_DRIVER_LIST};
for(i = 0; i < sizeof(dclist)/sizeof(dclist[0]); i++) {
if (!(dclist[i]->d.flags & GKEYBOARD_VFLG_DYNAMICONLY))
gdriverRegister(&dclist[i]->d, 0);
}
}
// One and only one mouse
#else
{
extern const GKeyboardVMT const GKEYBOARDVMT_OnlyOne[1];
if (!(GKEYBOARDVMT_OnlyOne->d.flags & GKEYBOARD_VFLG_DYNAMICONLY))
gdriverRegister(&GKEYBOARDVMT_OnlyOne->d, 0);
}
#endif
}
void _gkeyboardDeinit(void) {
gtimerDeinit(&KeyboardTimer);
}
bool_t _gkeyboardInitDriver(GDriver *g, void *param, unsigned driverinstance, unsigned systeminstance) {
#define k ((GKeyboard *)g)
(void) param;
(void) systeminstance;
// The initial keyboard layout comes from the VMT
k->pLayout = gkvmt(k)->defLayout;
// Init the mouse
if (!gkvmt(k)->init((GKeyboard *)g, driverinstance))
return FALSE;
// Ensure the Poll timer is started
if (!gtimerIsActive(&KeyboardTimer))
gtimerStart(&KeyboardTimer, KeyboardPoll, 0, TRUE, GINPUT_KEYBOARD_POLL_PERIOD);
return TRUE;
#undef k
}
void _gkeyboardPostInitDriver(GDriver *g) {
#define k ((GKeyboard *)g)
// Run the init sequence from the layout microcode.
microengine(k, 0, FLAG_INIT);
#undef k
}
void _gkeyboardDeInitDriver(GDriver *g) {
(void) g;
}
GSourceHandle ginputGetKeyboard(unsigned instance) {
if (instance == GKEYBOARD_ALL_INSTANCES)
return (GSourceHandle)&KeyboardTimer;
return (GSourceHandle)gdriverGetInstance(GDRIVER_TYPE_KEYBOARD, instance);
}
bool_t ginputGetKeyboardStatus(unsigned instance, GEventKeyboard *pe) {
GKeyboard *k;
// Win32 threads don't seem to recognise priority and/or pre-emption
// so we add a sleep here to prevent 100% polled applications from locking up.
gfxSleepMilliseconds(1);
if (!(k = (GKeyboard *)gdriverGetInstance(GDRIVER_TYPE_KEYBOARD, instance)))
return FALSE;
pe->type = GEVENT_KEYBOARD;
// TODO
return TRUE;
}
#if !GKEYBOARD_LAYOUT_OFF
bool_t ginputSetKeyboardLayout(unsigned instance, const void *pLayout) {
GKeyboard *k;
if (!(k = (GKeyboard *)gdriverGetInstance(GDRIVER_TYPE_KEYBOARD, instance)))
return FALSE;
if (pLayout)
k->pLayout = pLayout;
else
k->pLayout = gkvmt(k)->defLayout;
return TRUE;
}
#endif
/* Wake up the keyboard driver from an interrupt service routine (there may be new readings available) */
void _gkeyboardWakeup(GKeyboard *k) {
if (k)
k->flags |= GKEYBOARD_FLG_NEEDREAD;
gtimerJab(&KeyboardTimer);
}
/* Wake up the keyboard driver from an interrupt service routine (there may be new readings available) */
void _gkeyboardWakeupI(GKeyboard *k) {
if (k)
k->flags |= GKEYBOARD_FLG_NEEDREAD;
gtimerJabI(&KeyboardTimer);
}
#endif /* GFX_USE_GINPUT && GINPUT_NEED_KEYBOARD */