ugfx/drivers/gdisp/SSD1848/gdisp_lld_SSD1848.c

624 lines
16 KiB
C

/*
* This file is subject to the terms of the GFX License. If a copy of
* the license was not distributed with this file, you can obtain one at:
*
* http://ugfx.org/license.html
*/
#include "gfx.h"
#if GFX_USE_GDISP
#define GDISP_DRIVER_VMT GDISPVMT_SSD1848
#include "gdisp_lld_config.h"
#include "../../../src/gdisp/gdisp_driver.h"
typedef struct LCD_Parameters
{
uint8_t curXPtr;
uint8_t startXPtr; /* The area start bit position in the start column */
uint8_t endXPtr; /* The area end bit position in the end column */
uint8_t curCol;
uint8_t startCol; /* The area start column */
uint8_t endCol; /* The area end column */
uint8_t curYPtr;
} LCD_Parameters;
#include "board_SSD1848.h"
#include <string.h> /* for memset */
/*===========================================================================*/
/* Driver local definitions. */
/*===========================================================================*/
#ifndef GDISP_SCREEN_HEIGHT
#define GDISP_SCREEN_HEIGHT 130
#endif
#ifndef GDISP_SCREEN_WIDTH
#define GDISP_SCREEN_WIDTH 128
#endif
#ifndef GDISP_INITIAL_CONTRAST
#define GDISP_INITIAL_CONTRAST 80
#endif
#ifndef GDISP_INITIAL_BACKLIGHT
#define GDISP_INITIAL_BACKLIGHT 100
#endif
#ifdef SSD1848_PAGE_PREFIX
#define SSD1848_PAGE_WIDTH (GDISP_SCREEN_WIDTH + 1)
#define SSD1848_PAGE_OFFSET 1
#else
#define SSD1848_PAGE_WIDTH GDISP_SCREEN_WIDTH
#define SSD1848_PAGE_OFFSET 0
#endif
#define GDISP_FLG_NEEDFLUSH (GDISP_FLG_DRIVER << 0)
#include "SSD1848.h"
/*===========================================================================*/
/* Driver local functions. */
/*===========================================================================*/
/* Some common routines and macros */
#define PRM(g) ((LCD_Parameters *)g->priv)
#define RAM(g) ((uint8_t *)(PRM(g)+1))
#define write_cmd2(g, cmd1, cmd2) { spi_write_cmd (g, cmd1); spi_write_data (g, cmd2); }
#define write_cmd3(g, cmd1, cmd2, cmd3) { spi_write_cmd (g, cmd1); spi_write_data2 (g, cmd2, cmd3); }
#define xyaddr(x, y) (SSD1848_PAGE_OFFSET + (x) + ((y) >> 3) * SSD1848_PAGE_WIDTH)
#define xybit(y) (1 << ((y) & 7))
static void set_viewport (GDisplay* g)
{
switch (g->g.Orientation)
{
default:
case GDISP_ROTATE_0:
spi_write_cmd (g, SSD1848_HV_COLUMN_ADDRESS);
spi_write_data2 (g, (uint8_t) (g->p.x / 8), (uint8_t) ((g->p.x + g->p.cx - 1) / 8));
spi_write_cmd (g, SSD1848_HV_PAGE_ADDRESS);
spi_write_data2 (g, g->p.y, g->p.y + g->p.cy - 1);
spi_write_cmd (g, SSD1848_WRITE_DISP_DATA);
break;
case GDISP_ROTATE_90:
spi_write_cmd (g, SSD1848_HV_COLUMN_ADDRESS);
spi_write_data2 (g, g->p.y, g->p.y + g->p.cy - 1);
spi_write_cmd (g, SSD1848_HV_PAGE_ADDRESS);
spi_write_data2 (g, g->g.Width - g->p.x - g->p.cx, g->g.Width - 1 - g->p.x);
spi_write_cmd (g, SSD1848_WRITE_DISP_DATA);
break;
case GDISP_ROTATE_180:
spi_write_cmd (g, SSD1848_HV_COLUMN_ADDRESS);
spi_write_data2 (g, g->g.Width - g->p.x - g->p.cx, g->g.Width - 1 - g->p.x);
spi_write_cmd (g, SSD1848_HV_PAGE_ADDRESS);
spi_write_data2 (g, g->g.Height - g->p.y - g->p.cy, g->g.Height - 1 - g->p.y);
spi_write_cmd (g, SSD1848_WRITE_DISP_DATA);
break;
case GDISP_ROTATE_270:
spi_write_cmd (g, SSD1848_HV_COLUMN_ADDRESS);
spi_write_data2 (g, g->g.Height - g->p.y - g->p.cy, g->g.Height - 1 - g->p.y);
spi_write_cmd (g, SSD1848_HV_PAGE_ADDRESS);
spi_write_data2 (g, g->p.x, g->p.x + g->p.cx - 1);
spi_write_cmd (g, SSD1848_WRITE_DISP_DATA);
break;
}
}
/**
* As this controller can't update on a pixel boundary we need to maintain the
* the entire display surface in memory so that we can do the necessary bit
* operations. Fortunately it is a small display in monochrome.
* 128 * 128 / 8 = 2048 bytes.
*/
LLDSPEC gBool gdisp_lld_init (GDisplay *g)
{
uint8_t temp [5] = { 0 };
/* The private area is the display surface. */
g->priv = gfxAlloc (sizeof(DisplayData) + GDISP_SCREEN_WIDTH / 8 * GDISP_SCREEN_HEIGHT);
if (!g->priv)
return gFalse;
memset (g->priv, 0, sizeof(DisplayData) + GDISP_SCREEN_WIDTH / 8 * GDISP_SCREEN_HEIGHT);
/* Initialise the board interface */
init_board (g);
/* Init LCD */
/* Hardware reset */
setpin_reset (g, gFalse);
gfxSleepMilliseconds (50);
setpin_reset (g, gTrue);
gfxSleepMilliseconds (50);
setpin_reset (g, gFalse);
acquire_bus (g);
gfxSleepMilliseconds (50);
spi_write_cmd (g, SSD1848_ENABLE_INTERNAL_CLOCK); /* 0xD1 */
spi_write_cmd (g, SSD1848_EXITSLEEP); /* 0x94 */
gfxSleepMilliseconds (20);
spi_write_cmd (g, SSD1848_SET_FRAME_FREQ_LINEINVE);
spi_write_data2 (g, 0x00, 0x00);
temp [0] = 0x00;
temp [1] = 0x0e;
temp [2] = 0x41;
spi_write_cmd (g, SSD1848_SET_BLACK_WHITE);
spi_write_data_array (g, temp, 3);
temp [0] = 0x00;
temp [1] = 0x00;
temp [2] = 0x00;
spi_write_cmd (g, SSD1848_DATA_OUTPUT_SCAN_DIR);
spi_write_data_array (g, temp, 3);
spi_write_cmd (g, SSD1848_SETSTARTLINE);
spi_write_data (g, 0x00);
spi_write_cmd (g, SSD1848_COM_OUTPUT_SCAN_DIR);
spi_write_data (g, 0x01);
spi_write_cmd (g, SSD1848_SETDISP_CTRL); /* 0xCA */
temp [0] = 0x00;
temp [1] = 0x20; /* 0x1F */
temp [2] = 0x00;
spi_write_data_array (g, temp, 3);
spi_write_cmd (g, SSD1848_SETPOWER_CTRL); /* 0x20 */
spi_write_data (g, 0x0F);
gfxSleepMilliseconds (150);
spi_write_cmd (g, SSD1848_SETCONTRAST); /* 0x81 */
spi_write_data2 (g, 0x28, 0x06);
spi_write_cmd (g, SSD1848_TEMP_COMPENSATION);
spi_write_data (g, 0x01);
spi_write_cmd (g, SSD1848_SET_BIASING_LOCK); /* 0xFB */
spi_write_data (g, 0x02);
spi_write_cmd (g, 0xF3);
temp [0] = 0xc4;
temp [1] = 0x15;
temp [2] = 0x00;
temp [3] = 0x80;
spi_write_data_array (g, temp, 4);
spi_write_cmd (g, SSD1848_SET_FRAME_FREQ_LINEINVE);
temp [0] = 0x40;
temp [1] = 0x04;
temp [2] = 0x10;
temp [3] = 0x01;
spi_write_data_array (g, temp, 4);
spi_write_cmd (g, SSD1848_DISPLAYON);
spi_write_cmd (g, SSD1848_DUAL_OPT_SET);
spi_write_data2 (g, 0x1F, 0x06);
release_bus (g);
/* Finish Init */
post_init_board (g);
/* Initialise the GDISP structure */
g->g.Width = GDISP_SCREEN_WIDTH;
g->g.Height = GDISP_SCREEN_HEIGHT;
g->g.Orientation = GDISP_ROTATE_0;
g->g.Powermode = powerOn;
g->g.Backlight = GDISP_INITIAL_BACKLIGHT;
g->g.Contrast = GDISP_INITIAL_CONTRAST;
return gTrue;
}
#if GDISP_HARDWARE_STREAM_WRITE
LLDSPEC void gdisp_lld_write_start (GDisplay *g)
{
acquire_bus (g);
set_viewport (g);
PRM(g)->curCol = PRM(g)->startCol = (uint8_t) (g->p.x / 8);
PRM(g)->endCol = (uint8_t) ((g->p.x + g->p.cx - 1) / 8);
PRM(g)->curXPtr = PRM(g)->startXPtr = (uint8_t) (g->p.x % 8);
PRM(g)->endXPtr = (uint8_t) ((g->p.x + g->p.cx - 1) % 8);
PRM(g)->curYPtr = g->p.y;
}
LLDSPEC void gdisp_lld_write_color (GDisplay *g)
{
uint8_t temp;
uint8_t a;
uint16_t y = PRM(g)->curYPtr;
uint16_t c = PRM(g)->curCol;
temp = RAM (g)[y * 16 + c];
if (gdispColor2Native (g->p.color))
{
temp |= 0x80 >> PRM(g)->curXPtr;
}
else
{
temp &= ~(0x80 >> PRM(g)->curXPtr);
}
RAM (g)[y * 16 + c] = temp;
PRM(g)->curXPtr++;
if (PRM(g)->curXPtr == 8)
{
spi_write_data (g, temp);
if (PRM(g)->curCol == PRM(g)->endCol)
{
PRM(g)->curYPtr++;
PRM(g)->curCol = PRM(g)->startCol;
PRM(g)->curXPtr = PRM(g)->startXPtr;
}
else
{
PRM(g)->curCol++;
PRM(g)->curXPtr = 0;
}
}
/* If hit the boundary, flush the byte */
else if ((PRM(g)->curCol == PRM(g)->endCol) &&
(PRM(g)->curXPtr == PRM(g)->endXPtr + 1))
{
spi_write_data (g, temp);
PRM(g)->curXPtr = PRM(g)->startXPtr;
PRM(g)->curCol = PRM(g)->startCol;
PRM(g)->curYPtr++;
}
}
LLDSPEC void gdisp_lld_write_stop (GDisplay *g)
{
release_bus (g);
}
#endif
#if GDISP_HARDWARE_FLUSH
LLDSPEC void gdisp_lld_flush (GDisplay *g)
{
uint8_t * ram;
unsigned pages;
/* Don't flush if we don't need it. */
if (!(g->flags & GDISP_FLG_NEEDFLUSH))
return;
ram = RAM (g);
pages = GDISP_SCREEN_WIDTH / 8;
acquire_bus (g);
spi_write_cmd (g, SSD1848_SETSTARTLINE | 0);
while (pages--)
{
spi_write_data_array (g, ram, SSD1848_PAGE_WIDTH);
ram += SSD1848_PAGE_WIDTH;
}
release_bus (g);
g->flags &= ~GDISP_FLG_NEEDFLUSH;
}
#endif
#if GDISP_HARDWARE_CLEARS
LLDSPEC void gdisp_lld_clear (GDisplay *g)
{
uint16_t area = GDISP_SCREEN_WIDTH / 8 * GDISP_SCREEN_HEIGHT;
if (gdispColor2Native (g->p.color))
{
memset (RAM (g), 0xFF, GDISP_SCREEN_WIDTH / 8 * GDISP_SCREEN_HEIGHT);
}
else
{
memset (RAM (g), 0, GDISP_SCREEN_WIDTH / 8 * GDISP_SCREEN_HEIGHT);
}
acquire_bus (g);
spi_write_cmd (g, SSD1848_HV_COLUMN_ADDRESS);
spi_write_data2 (g, 0, 15);
spi_write_cmd (g, SSD1848_HV_PAGE_ADDRESS);
spi_write_data2 (g, 0, 129);
spi_write_cmd (g, SSD1848_WRITE_DISP_DATA);
for (; area; area--)
{
spi_write_data (g, 0);
}
release_bus (g);
}
#endif
#if GDISP_HARDWARE_FILLS
LLDSPEC void gdisp_lld_fill_area (GDisplay *g)
{
gCoord scol, ecol, sx, ex;
gCoord y, col, x;
uint16_t area = (uint16_t) g->p.cx * g->p.cy;
uint8_t temp;
col = scol = (uint8_t) (g->p.x / 8);
ecol = (uint8_t) ((g->p.x + g->p.cx - 1) / 8);
x = sx = (uint8_t) (g->p.x % 8);
ex = (uint8_t) ((g->p.x + g->p.cx - 1) % 8);
y = g->p.y;
acquire_bus (g);
set_viewport (g);
for (; area; area--)
{
temp = RAM (g)[y * 16 + col];
if (gdispColor2Native (g->p.color))
{
temp |= (0x80 >> x);
}
else
{
temp &= ~(0x80 >> x);
}
RAM (g)[y * 16 + col] = temp;
if (++x == 8)
{
spi_write_data (g, temp);
if (col == ecol)
{
y++;
col = scol;
x = sx;
}
else
{
col++;
x = 0;
}
}
/* If hit the boundary, flush the byte */
else if ((col == ecol) && (x == ex + 1))
{
spi_write_data (g, temp);
x = sx;
col = scol;
y++;
}
}
release_bus (g);
}
#endif
#if GDISP_HARDWARE_DRAWPIXEL
LLDSPEC void gdisp_lld_draw_pixel (GDisplay *g)
{
gCoord x, y;
switch (g->g.Orientation)
{
default:
case GDISP_ROTATE_0:
x = g->p.x;
y = g->p.y;
break;
case GDISP_ROTATE_90:
x = g->p.y;
y = GDISP_SCREEN_HEIGHT - 1 - g->p.x;
break;
case GDISP_ROTATE_180:
x = GDISP_SCREEN_WIDTH - 1 - g->p.x;
y = GDISP_SCREEN_HEIGHT - 1 - g->p.y;
break;
case GDISP_ROTATE_270:
x = GDISP_SCREEN_WIDTH - 1 - g->p.y;
y = g->p.x;
break;
}
if (gdispColor2Native (g->p.color) != gdispColor2Native (GFX_BLACK))
RAM (g)[xyaddr (x, y)] |= xybit (y);
else
RAM (g)[xyaddr (x, y)] &= ~xybit(y);
g->flags |= GDISP_FLG_NEEDFLUSH;
}
#endif
#if GDISP_HARDWARE_PIXELREAD
LLDSPEC color_t gdisp_lld_get_pixel_color (GDisplay *g)
{
gCoord x, y;
switch (g->g.Orientation)
{
default:
case GDISP_ROTATE_0:
x = g->p.x;
y = g->p.y;
break;
case GDISP_ROTATE_90:
x = g->p.y;
y = GDISP_SCREEN_HEIGHT - 1 - g->p.x;
break;
case GDISP_ROTATE_180:
x = GDISP_SCREEN_WIDTH - 1 - g->p.x;
y = GDISP_SCREEN_HEIGHT - 1 - g->p.y;
break;
case GDISP_ROTATE_270:
x = GDISP_SCREEN_WIDTH - 1 - g->p.y;
y = g->p.x;
break;
}
return (RAM (g)[xyaddr (x, y)] & xybit (y)) ? GFX_WHITE : GFX_BLACK;
}
#endif
#if GDISP_NEED_CONTROL && GDISP_HARDWARE_CONTROL
LLDSPEC void gdisp_lld_control (GDisplay *g)
{
switch (g->p.x)
{
case GDISP_CONTROL_POWER:
if (g->g.Powermode == (powermode_t) g->p.ptr)
return;
switch ((powermode_t) g->p.ptr)
{
case powerOff:
acquire_bus (g);
spi_write_cmd (g, SSD1848_SETCONTRAST);
spi_write_data2 (g, 0x00, 0x00); /* Drop the contrast & gain */
spi_write_cmd (g, SSD1848_DISPLAYOFF);
spi_write_cmd (g, SSD1848_ENTERSLEEP);
release_bus (g);
break;
case powerSleep:
case powerDeepSleep:
acquire_bus (g);
spi_write_cmd (g, SSD1848_ENTERSLEEP);
release_bus (g);
break;
case powerOn:
acquire_bus (g);
spi_write_cmd (g, SSD1848_EXITSLEEP); /* need this in case we were in 'normal' sleep mode */
gfxSleepMilliseconds (5);
spi_write_cmd (g, SSD1848_DISPLAYON);
release_bus (g);
break;
default:
return;
}
g->g.Powermode = (powermode_t) g->p.ptr;
return;
case GDISP_CONTROL_ORIENTATION:
if (g->g.Orientation == (orientation_t) g->p.ptr)
return;
switch ((orientation_t) g->p.ptr)
{
/* Rotation is handled by the drawing routines */
case GDISP_ROTATE_0:
case GDISP_ROTATE_180:
g->g.Height = GDISP_SCREEN_HEIGHT;
g->g.Width = GDISP_SCREEN_WIDTH;
break;
case GDISP_ROTATE_90:
case GDISP_ROTATE_270:
g->g.Height = GDISP_SCREEN_WIDTH;
g->g.Width = GDISP_SCREEN_HEIGHT;
break;
default:
return;
}
g->g.Orientation = (orientation_t) g->p.ptr;
return;
case GDISP_CONTROL_CONTRAST:
if ((unsigned) g->p.ptr > 100)
g->p.ptr = (void *) 100;
acquire_bus (g);
spi_write_cmd (g, SSD1848_SETCONTRAST);
spi_write_data (g, (((uint16_t) g->p.ptr) << 8) / 101);
release_bus (g);
g->g.Contrast = (uint8_t) g->p.ptr;
return;
/* Our own special controller code to inverse the display */
/* 0 = normal, 1 = inverse */
case GDISP_CONTROL_INVERSE:
acquire_bus (g);
spi_write_cmd (g, g->p.ptr ? SSD1848_INVERTDISPLAY : SSD1848_NORMALDISPLAY);
release_bus (g);
return;
}
}
#endif /* GDISP_NEED_CONTROL */
#if GDISP_HARDWARE_BITFILLS
LLDSPEC void gdisp_lld_blit_area (GDisplay *g)
{
gCoord scol, ecol, sx;
gCoord y, col;
uint16_t area;
uint8_t temp, temp2, i;
col = scol = (uint8_t) (g->p.x / 8);
ecol = (uint8_t) ((g->p.x + g->p.cx - 1) / 8);
sx = (uint8_t) (g->p.x % 8);
y = g->p.y;
area = (ecol - scol + 1) * (g->p.cy);
acquire_bus (g);
set_viewport (g);
/* Bitfill align with Column */
if (sx == 0)
{
for (; area; area--)
{
temp = RAM (g)[y * 16 + col] = *((uint8_t *) g->p.ptr)++;
spi_write_data (g, temp);
if (col == ecol)
{
y++;
col = scol;
}
else
{
col++;
}
}
}
else
{
/* Bitfil doesn't align with column */
for (; area; area--)
{
temp = RAM (g)[y * 16 + col];
if (col != ecol)
{
temp |= (*((uint8_t *) g->p.ptr) >> sx);
RAM (g)[y * 16 + col] = temp;
temp2 = RAM (g)[y * 16 + col + 1];
temp2 |= (*((uint8_t *) g->p.ptr) << (8-sx));
RAM (g)[y * 16 + col + 1] = temp2;
((uint8_t *) g->p.ptr)++;
}
spi_write_data (g, temp);
if (col == ecol)
{
y++;
col = scol;
}
else
{
col++;
}
}
}
release_bus (g);
}
#endif
#endif /* GFX_USE_GDISP */