ugfx/halext/drivers/gdispS6d1121/s6d1121_lld.c.h
Andrew Hannam c99accc70e Extracted font structure definitions, re-organised some files, added gdispS6d1121 driver
Created gdisp_fonts.h to describe the internal structure of a font.
Moved template directory to templates and created a sub-folder for each
low level driver type.
Moved the pre-defined font data and emulation code into better
locations.
Changed the emulation code to be included in the low level driver (where
it should be) instead of the high level driver.
Added new low level driver gdispS6d1121 (someone please test)
Updated and added new readme's.
2012-08-02 02:03:46 +10:00

224 lines
6.5 KiB
C

#ifndef S6D1121_H
#define S6D1121_H
// I/O assignments
#define LCD_BL_GPIO GPIOB
#define LCD_BL_PIN 8
#define LCD_CS_GPIO GPIOD
#define LCD_CS_PIN 7
#define LCD_RS_GPIO GPIOD
#define LCD_RS_PIN 11
#define LCD_RST_GPIO GPIOD
#define LCD_RST_PIN 10
#define LCD_RD_GPIO GPIOD
#define LCD_RD_PIN 9
#define LCD_WR_GPIO GPIOD
#define LCD_WR_PIN 8
#define LCD_D0_GPIO GPIOD
#define LCD_D4_GPIO GPIOE
/* all interfaces use RST via GPIO */
/* TODO: option to disable RST; assumes RST is tied high */
#define LCD_RST_LOW palClearPad(LCD_RST_GPIO, LCD_RST_PIN)
#define LCD_RST_HIGH palSetPad(LCD_RST_GPIO, LCD_RST_PIN)
#define s6d1121_delay(n) halPolledDelay(MS2RTT(n));
#if defined(LCD_USE_GPIO)
#define LCD_CS_LOW palClearPad(LCD_CS_GPIO, LCD_CS_PIN)
#define LCD_CS_HIGH palSetPad(LCD_CS_GPIO, LCD_CS_PIN)
#define LCD_RS_LOW palClearPad(LCD_RS_GPIO, LCD_RS_PIN)
#define LCD_RS_HIGH palSetPad(LCD_RS_GPIO, LCD_RS_PIN)
#define LCD_RD_LOW palClearPad(LCD_RD_GPIO, LCD_RD_PIN)
#define LCD_RD_HIGH palSetPad(LCD_RD_GPIO, LCD_RD_PIN)
#define LCD_WR_LOW palClearPad(LCD_WR_GPIO, LCD_WR_PIN)
#define LCD_WR_HIGH palSetPad(LCD_WR_GPIO, LCD_WR_PIN)
#define LCD_BL_LOW palClearPad(LCD_BL_GPIO, LCD_BL_PIN)
#define LCD_BL_HIGH palSetPad(LCD_BL_GPIO, LCD_BL_PIN)
static inline void lld_lcddelay(void) { asm volatile ("nop"); asm volatile ("nop"); }
static inline void lld_lcdwrite(uint16_t db) {
LCD_D4_GPIO->BSRR.W=((~db&0xFFF0)<<16)|(db&0xFFF0);
LCD_D0_GPIO->BSRR.W=((~db&0x000F)<<16)|(db&0x000F);
LCD_WR_LOW;
lld_lcddelay();
LCD_WR_HIGH;
}
static __inline uint16_t lld_lcdReadData(void) {
uint16_t value=0;
LCD_RS_HIGH; LCD_WR_HIGH; LCD_RD_LOW;
#ifndef STM32F4XX
// change pin mode to digital input
LCD_DATA_PORT->CRH = 0x47444444;
LCD_DATA_PORT->CRL = 0x47444444;
#endif
#ifndef STM32F4XX
// change pin mode back to digital output
LCD_DATA_PORT->CRH = 0x33333333;
LCD_DATA_PORT->CRL = 0x33333333;
#endif
LCD_RD_HIGH;
return value;
}
static __inline uint16_t lld_lcdReadReg(uint16_t lcdReg) {
uint16_t value;
LCD_CS_LOW; LCD_RS_LOW;
lld_lcdwrite(lcdReg);
LCD_RS_HIGH;
lcdRAM = lld_lcdReadData();
LCD_CS_HIGH;
return lcdRAM;
}
static void lld_lcdWriteIndex(uint16_t lcdReg) {
LCD_RS_LOW;
lld_lcdwrite(lcdReg);
LCD_RS_HIGH;
}
static void lld_lcdWriteData(uint16_t lcdData) {
lld_lcdwrite(lcdData);
}
static void lld_lcdWriteReg(uint16_t lcdReg, uint16_t lcdRegValue) {
LCD_CS_LOW;
lld_lcdWriteIndex(lcdReg);
lld_lcdWriteData(lcdRegValue);
LCD_CS_HIGH;
}
static __inline void lld_lcdWriteStreamStart(void) {
LCD_CS_LOW;
lld_lcdWriteIndex(0x0022);
}
static __inline void lld_lcdWriteStreamStop(void) {
LCD_CS_HIGH;
}
static __inline void lld_lcdWriteStream(uint16_t *buffer, uint16_t size) {
uint16_t i;
for(i = 0; i < size; i++) { lld_lcdwrite(buffer[i]); }
}
static __inline void lld_lcdReadStreamStart(void) { /* TODO */ }
static __inline void lld_lcdReadStreamStop(void) { /* TODO */ }
static __inline void lld_lcdReadStream(uint16_t *UNUSED(buffer), size_t UNUSED(size)) { /* TODO */ }
#elif defined(LCD_USE_FSMC)
#define LCD_REG (*((volatile uint16_t *) 0x60000000)) /* RS = 0 */
#define LCD_RAM (*((volatile uint16_t *) 0x60020000)) /* RS = 1 */
static __inline void lld_lcdWriteIndex(uint16_t index) { LCD_REG = index; }
static __inline void lld_lcdWriteData(uint16_t data) { LCD_RAM = data; }
static __inline void lld_lcdWriteReg(uint16_t lcdReg,uint16_t lcdRegValue) {
LCD_REG = lcdReg;
LCD_RAM = lcdRegValue;
}
static __inline uint16_t lld_lcdReadData(void) { return (LCD_RAM); }
static __inline uint16_t lld_lcdReadReg(uint16_t lcdReg) {
LCD_REG = lcdReg;
return LCD_RAM;
}
static __inline void lld_lcdWriteStreamStart(void) { LCD_REG = 0x0022; }
static __inline void lld_lcdWriteStreamStop(void) {}
static __inline void lld_lcdWriteStream(uint16_t *buffer, uint16_t size) {
uint16_t i;
for(i = 0; i < size; i++) LCD_RAM = buffer[i];
}
static __inline void lld_lcdReadStreamStart(void) { LCD_REG = 0x0022; }
static __inline void lld_lcdReadStreamStop(void) {}
static __inline void lld_lcdReadStream(uint16_t *buffer, size_t size) {
uint16_t i;
volatile uint16_t dummy;
/* throw away first value read */
dummy = LCD_RAM;
for(i = 0; i < size; i++) buffer[i] = LCD_RAM;
}
#elif defined(LCD_USE_SPI)
#error "gdispS6d1121: LCD_USE_SPI not implemented yet"
#else
#error "gdispS6d1121: No known LCD_USE_XXX has been defined"
#endif
static void lld_lcdSetCursor(coord_t x, coord_t y) {
/* R20h - 8 bit
* R21h - 9 bit
*/
switch(GDISP.Orientation) {
case portraitInv:
lld_lcdWriteReg(0x0020, (SCREEN_WIDTH-1-x) & 0x00FF);
lld_lcdWriteReg(0x0021, (SCREEN_HEIGHT-1-y) & 0x01FF);
break;
case portrait:
lld_lcdWriteReg(0x0020, x & 0x00FF);
lld_lcdWriteReg(0x0021, y & 0x01FF);
break;
case landscape:
lld_lcdWriteReg(0x0020, y & 0x00FF);
lld_lcdWriteReg(0x0021, x & 0x01FF);
break;
case landscapeInv:
lld_lcdWriteReg(0x0020, (SCREEN_WIDTH - y - 1) & 0x00FF);
lld_lcdWriteReg(0x0021, (SCREEN_HEIGHT - x - 1) & 0x01FF);
break;
}
}
static void lld_lcdSetViewPort(uint16_t x, uint16_t y, uint16_t cx, uint16_t cy) {
/* HSA / HEA are 8 bit
* VSA / VEA are 9 bit
* use masks 0x00FF and 0x01FF to enforce this
*/
switch(GDISP.Orientation) {
case portrait:
lld_lcdWriteReg(0x46, (((x+cx-1) << 8) & 0xFF00 ) | (x & 0x00FF));
lld_lcdWriteReg(0x48, y & 0x01FF);
lld_lcdWriteReg(0x47, (y+cy-1) & 0x01FF);
break;
case landscape:
lld_lcdWriteReg(0x46, (((x+cx-1) << 8) & 0xFF00) | ((y+cy) & 0x00FF));
lld_lcdWriteReg(0x48, x & 0x01FF);
lld_lcdWriteReg(0x47, (x+cx-1) & 0x01FF);
break;
case portraitInv:
lld_lcdWriteReg(0x46, (((SCREEN_WIDTH-x-1) & 0x00FF) << 8) | ((SCREEN_WIDTH - (x+cx)) & 0x00FF));
lld_lcdWriteReg(0x48, (SCREEN_HEIGHT-(y+cy)) & 0x01FF);
lld_lcdWriteReg(0x47, (SCREEN_HEIGHT-y-1) & 0x01FF);
break;
case landscapeInv:
lld_lcdWriteReg(0x46, (((SCREEN_WIDTH - y - 1) & 0x00FF) << 8) | ((SCREEN_WIDTH - (y+cy)) & 0x00FF));
lld_lcdWriteReg(0x48, (SCREEN_HEIGHT - (x+cx)) & 0x01FF);
lld_lcdWriteReg(0x47, (SCREEN_HEIGHT - x - 1) & 0x01FF);
break;
}
lld_lcdSetCursor(x, y);
}
static void lld_lcdResetViewPort(void) {
switch(GDISP.Orientation) {
case portrait:
case portraitInv:
lld_lcdSetViewPort(0, 0, SCREEN_WIDTH, SCREEN_HEIGHT);
break;
case landscape:
case landscapeInv:
lld_lcdSetViewPort(0, 0, SCREEN_HEIGHT, SCREEN_WIDTH);
break;
}
}
#endif /* S6D1121_H */