bd573fbef1
The code now uses my API Pls contact for further documentation
315 lines
7.4 KiB
C
315 lines
7.4 KiB
C
#include "s6d1121_lld.h"
|
|
|
|
#ifdef LCD_USE_S6D1121
|
|
|
|
#define LCD_RST_LOW palClearPad(LCD_RST_GPIO, LCD_RST_PIN)
|
|
#define LCD_RST_HIGH palSetPad(LCD_RST_GPIO, LCD_RST_PIN)
|
|
|
|
#define LCD_CS_LOW palClearPad(LCD_CS_GPIO, LCD_CS_PIN)
|
|
#define LCD_CS_HIGH palSetPad(LCD_CS_GPIO, LCD_CS_PIN)
|
|
|
|
#define LCD_RS_LOW palClearPad(LCD_RS_GPIO, LCD_RS_PIN)
|
|
#define LCD_RS_HIGH palSetPad(LCD_RS_GPIO, LCD_RS_PIN)
|
|
|
|
#define LCD_RD_LOW palClearPad(LCD_RD_GPIO, LCD_RD_PIN)
|
|
#define LCD_RD_HIGH palSetPad(LCD_RD_GPIO, LCD_RD_PIN)
|
|
|
|
#define LCD_WR_LOW palClearPad(LCD_WR_GPIO, LCD_WR_PIN)
|
|
#define LCD_WR_HIGH palSetPad(LCD_WR_GPIO, LCD_WR_PIN)
|
|
|
|
#define LCD_BL_LOW palClearPad(LCD_BL_GPIO, LCD_BL_PIN)
|
|
#define LCD_BL_HIGH palSetPad(LCD_BL_GPIO, LCD_BL_PIN)
|
|
|
|
static uint8_t orientation;
|
|
extern uint16_t lcd_width, lcd_height;
|
|
|
|
inline void lld_lcddelay(void)
|
|
{
|
|
asm volatile ("nop");
|
|
asm volatile ("nop");
|
|
}
|
|
|
|
inline void lld_lcdwrite(uint16_t db)
|
|
{
|
|
LCD_D4_GPIO->BSRR.W=((~db&0xFFF0)<<16)|(db&0xFFF0);
|
|
LCD_D0_GPIO->BSRR.W=((~db&0x000F)<<16)|(db&0x000F);
|
|
|
|
LCD_WR_LOW;
|
|
lld_lcddelay();
|
|
LCD_WR_HIGH;
|
|
}
|
|
|
|
static __inline uint16_t lcdReadData(void) {
|
|
uint16_t value=0;
|
|
|
|
LCD_RS_HIGH;
|
|
LCD_WR_HIGH;
|
|
LCD_RD_LOW;
|
|
|
|
#ifndef STM32F4XX
|
|
// change pin mode to digital input
|
|
LCD_DATA_PORT->CRH = 0x47444444;
|
|
LCD_DATA_PORT->CRL = 0x47444444;
|
|
#else
|
|
|
|
#endif
|
|
|
|
// value = palReadPort(LCD_DATA_PORT); // dummy
|
|
// value = palReadPort(LCD_DATA_PORT);
|
|
|
|
#ifndef STM32F4XX
|
|
// change pin mode back to digital output
|
|
LCD_DATA_PORT->CRH = 0x33333333;
|
|
LCD_DATA_PORT->CRL = 0x33333333;
|
|
#else
|
|
#endif
|
|
LCD_RD_HIGH;
|
|
|
|
return value;
|
|
}
|
|
|
|
static __inline uint16_t lcdReadReg(uint16_t lcdReg) {
|
|
uint16_t lcdRAM;
|
|
|
|
LCD_CS_LOW;
|
|
LCD_RS_LOW;
|
|
lld_lcdwrite(lcdReg);
|
|
LCD_RS_HIGH;
|
|
lcdRAM = lcdReadData();
|
|
|
|
LCD_CS_HIGH;
|
|
|
|
return lcdRAM;
|
|
}
|
|
|
|
void lcdWriteIndex(uint16_t lcdReg) {
|
|
LCD_RS_LOW;
|
|
|
|
lld_lcdwrite(lcdReg);
|
|
|
|
LCD_RS_HIGH;
|
|
}
|
|
|
|
void lcdWriteData(uint16_t lcdData) {
|
|
lld_lcdwrite(lcdData);
|
|
}
|
|
|
|
void lcdWriteReg(uint16_t lcdReg, uint16_t lcdRegValue) {
|
|
LCD_CS_LOW;
|
|
LCD_RS_LOW;
|
|
|
|
lld_lcdwrite(lcdReg);
|
|
|
|
LCD_RS_HIGH;
|
|
|
|
lld_lcdwrite(lcdRegValue);
|
|
|
|
LCD_CS_HIGH;
|
|
}
|
|
|
|
void lld_lcdInit(void) {
|
|
// ChibiOS HAL has a nice and precise delay function,
|
|
// halPolledDelay(US2RTT(x)); or halPolledDelay(MS2RTT(x));
|
|
// Why Not use it?
|
|
// IO Default Configurations
|
|
palSetPadMode(LCD_CS_GPIO, LCD_CS_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
|
|
palSetPadMode(LCD_WR_GPIO, LCD_WR_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
|
|
palSetPadMode(LCD_RD_GPIO, LCD_RD_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
|
|
palSetPadMode(LCD_RST_GPIO, LCD_RST_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
|
|
palSetPadMode(LCD_RS_GPIO, LCD_RS_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
|
|
palSetPadMode(LCD_BL_GPIO, LCD_BL_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
|
|
|
|
palSetGroupMode(LCD_D0_GPIO, 0x0000000F, 0, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
|
|
palSetGroupMode(LCD_D4_GPIO, 0x0000FFF0, 0, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
|
|
|
|
LCD_CS_HIGH;
|
|
LCD_RST_HIGH;
|
|
LCD_RD_HIGH;
|
|
LCD_WR_HIGH;
|
|
LCD_BL_LOW;
|
|
|
|
// A Good idea to reset the module before using
|
|
LCD_RST_LOW;
|
|
halPolledDelay(MS2RTT(2));
|
|
LCD_RST_HIGH; // Hardware Reset
|
|
halPolledDelay(MS2RTT(2));
|
|
|
|
lcdWriteReg(0x11,0x2004);
|
|
lcdWriteReg(0x13,0xCC00);
|
|
lcdWriteReg(0x15,0x2600);
|
|
lcdWriteReg(0x14,0x252A);
|
|
lcdWriteReg(0x12,0x0033);
|
|
lcdWriteReg(0x13,0xCC04);
|
|
|
|
halPolledDelay(MS2RTT(1));
|
|
|
|
lcdWriteReg(0x13,0xCC06);
|
|
|
|
halPolledDelay(MS2RTT(1));
|
|
|
|
lcdWriteReg(0x13,0xCC4F);
|
|
|
|
halPolledDelay(MS2RTT(1));
|
|
|
|
lcdWriteReg(0x13,0x674F);
|
|
lcdWriteReg(0x11,0x2003);
|
|
|
|
halPolledDelay(MS2RTT(1));
|
|
|
|
// Gamma Setting
|
|
lcdWriteReg(0x30,0x2609);
|
|
lcdWriteReg(0x31,0x242C);
|
|
lcdWriteReg(0x32,0x1F23);
|
|
lcdWriteReg(0x33,0x2425);
|
|
lcdWriteReg(0x34,0x2226);
|
|
lcdWriteReg(0x35,0x2523);
|
|
lcdWriteReg(0x36,0x1C1A);
|
|
lcdWriteReg(0x37,0x131D);
|
|
lcdWriteReg(0x38,0x0B11);
|
|
lcdWriteReg(0x39,0x1210);
|
|
lcdWriteReg(0x3A,0x1315);
|
|
lcdWriteReg(0x3B,0x3619);
|
|
lcdWriteReg(0x3C,0x0D00);
|
|
lcdWriteReg(0x3D,0x000D);
|
|
|
|
lcdWriteReg(0x16,0x0007);
|
|
lcdWriteReg(0x02,0x0013);
|
|
lcdWriteReg(0x03,0x0003);
|
|
lcdWriteReg(0x01,0x0127);
|
|
|
|
halPolledDelay(MS2RTT(1));
|
|
|
|
lcdWriteReg(0x08,0x0303);
|
|
lcdWriteReg(0x0A,0x000B);
|
|
lcdWriteReg(0x0B,0x0003);
|
|
lcdWriteReg(0x0C,0x0000);
|
|
lcdWriteReg(0x41,0x0000);
|
|
lcdWriteReg(0x50,0x0000);
|
|
lcdWriteReg(0x60,0x0005);
|
|
lcdWriteReg(0x70,0x000B);
|
|
lcdWriteReg(0x71,0x0000);
|
|
lcdWriteReg(0x78,0x0000);
|
|
lcdWriteReg(0x7A,0x0000);
|
|
lcdWriteReg(0x79,0x0007);
|
|
lcdWriteReg(0x07,0x0051);
|
|
|
|
halPolledDelay(MS2RTT(1));
|
|
|
|
lcdWriteReg(0x07,0x0053);
|
|
lcdWriteReg(0x79,0x0000);
|
|
}
|
|
|
|
void lld_lcdSetCursor(uint16_t x, uint16_t y) {
|
|
if(PORTRAIT) {
|
|
lcdWriteReg(0x0020, x);
|
|
lcdWriteReg(0x0021, y);
|
|
} else if(LANDSCAPE) {
|
|
lcdWriteReg(0x0020, y);
|
|
lcdWriteReg(0x0021, x);
|
|
}
|
|
}
|
|
|
|
// Do not use now, will be fixed in future
|
|
void lld_lcdSetOrientation(uint8_t newOrientation) {
|
|
orientation = newOrientation;
|
|
|
|
switch(orientation) {
|
|
case portrait:
|
|
lcdWriteReg(0x0001, 0x2B3F);
|
|
lcdWriteReg(0x0011, 0x6070);
|
|
lcd_height = SCREEN_HEIGHT;
|
|
lcd_width = SCREEN_WIDTH;
|
|
break;
|
|
case landscape:
|
|
lcdWriteReg(0x0001, 0x293F);
|
|
lcdWriteReg(0x0011, 0x6078);
|
|
lcd_height = SCREEN_WIDTH;
|
|
lcd_width = SCREEN_HEIGHT;
|
|
break;
|
|
case portraitInv:
|
|
lcdWriteReg(0x0001, 0x693F);
|
|
lcdWriteReg(0x0011, 0x6040);
|
|
lcd_height = SCREEN_HEIGHT;
|
|
lcd_width = SCREEN_WIDTH;
|
|
break;
|
|
case landscapeInv:
|
|
lcdWriteReg(0x0001, 0x6B3F);
|
|
lcdWriteReg(0x0011, 0x6048);
|
|
lcd_height = SCREEN_WIDTH;
|
|
lcd_width = SCREEN_HEIGHT;
|
|
break;
|
|
}
|
|
}
|
|
|
|
void lld_lcdSetWindow(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1) {
|
|
lld_lcdSetCursor(x0, y0);
|
|
|
|
switch(lcdGetOrientation()) {
|
|
case portrait:
|
|
lcdWriteReg(0x47, ((x0+x1-1) << 8) | x0);
|
|
lcdWriteReg(0x48, y0);
|
|
lcdWriteReg(0x47, y0+y1-1);
|
|
break;
|
|
case landscape:
|
|
lcdWriteReg(0x47, ((y0+y1-1) << 8) | y1);
|
|
lcdWriteReg(0x48, x0);
|
|
lcdWriteReg(0x47, x0+x1-1);
|
|
break;
|
|
case portraitInv:
|
|
lcdWriteReg(0x47, ((x0+x1-1) << 8) | x0);
|
|
lcdWriteReg(0x48, y0);
|
|
lcdWriteReg(0x47, y0+y1-1);
|
|
break;
|
|
case landscapeInv:
|
|
lcdWriteReg(0x47, ((y0+y1-1) << 8) | y1);
|
|
lcdWriteReg(0x48, x0);
|
|
lcdWriteReg(0x47, x0+x1-1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void lld_lcdClear(uint16_t color) {
|
|
uint32_t index = 0;
|
|
|
|
lld_lcdSetCursor(0,0);
|
|
LCD_CS_LOW;
|
|
lcdWriteIndex(0x0022);
|
|
for(index = 0; index < SCREEN_WIDTH * SCREEN_HEIGHT; index++)
|
|
lcdWriteData(color);
|
|
LCD_CS_HIGH;
|
|
}
|
|
|
|
// Do not use!
|
|
uint16_t lld_lcdGetPixelColor(uint16_t x, uint16_t y) {
|
|
uint16_t dummy;
|
|
|
|
lld_lcdSetCursor(x,y);
|
|
LCD_CS_LOW;
|
|
lcdWriteIndex(0x0022);
|
|
dummy = lcdReadData();
|
|
dummy = lcdReadData();
|
|
LCD_CS_HIGH;
|
|
|
|
return dummy;
|
|
}
|
|
|
|
void lld_lcdDrawPixel(uint16_t x, uint16_t y, uint16_t color) {
|
|
lld_lcdSetCursor(x, y);
|
|
lcdWriteReg(0x0022, color);
|
|
}
|
|
|
|
uint16_t lld_lcdGetOrientation(void) {
|
|
return orientation;
|
|
}
|
|
|
|
uint16_t lld_lcdGetHeight(void) {
|
|
return lcd_height;
|
|
}
|
|
|
|
uint16_t lld_lcdGetWidth(void) {
|
|
return lcd_width;
|
|
}
|
|
|
|
#endif
|
|
|