ugfx/drivers/lcd/ssd1289_lld.c
2012-06-27 21:46:16 +02:00

447 lines
11 KiB
C

#include "ssd1289_lld.h"
#ifdef LCD_USE_SSD1289
uint8_t orientation;
uint16_t DeviceCode;
extern uint16_t lcd_width, lcd_height;
static uint16_t buf[((SCREEN_HEIGHT > SCREEN_WIDTH ) ? SCREEN_HEIGHT : SCREEN_WIDTH)];
#ifdef LCD_USE_GPIO
static __inline void lld_lcdWriteIndex(uint16_t index) {
Clr_RS;
Set_RD;
lld_lcdWriteGPIO(index);
Clr_WR;
Set_WR;
}
static __inline void lld_lcdWriteData(uint16_t data) {
Set_RS;
lld_lcdWriteGPIO(data);
Clr_WR;
Set_WR;
}
static __inline void lld_lcdWriteReg(uint16_t lcdReg,uint16_t lcdRegValue) {
Clr_CS;
lld_lcdWriteIndex(lcdReg);
lld_lcdWriteData(lcdRegValue);
Set_CS;
}
static __inline uint16_t lld_lcdReadData(void) {
uint16_t value;
Set_RS;
Set_WR;
Clr_RD;
value = lld_lcdReadGPIO();
Set_RD;
return value;
}
static __inline uint16_t lld_lcdReadReg(uint16_t lcdReg) {
uint16_t lcdRAM;
Clr_CS;
lld_lcdWriteIndex(lcdReg);
lcdRAM = lld_lcdReadData();
Set_CS;
return lcdRAM;
}
__inline void lld_lcdWriteStreamStart(void) {
Clr_CS;
lld_lcdWriteIndex(0x0022);
}
__inline void lld_lcdWriteStreamStop(void) {
Set_CS;
}
__inline void lld_lcdWriteStream(uint16_t *buffer, uint16_t size) {
uint16_t i;
Set_RS;
for(i = 0; i < size; i++) {
lld_lcdWriteGPIO(buffer[i]);
Clr_WR;
Set_WR;
}
}
__inline void lld_lcdReadStreamStart(void) {
Clr_CS
lld_lcdWriteIndex(0x0022);
}
__inline void lld_lcdReadStreamStop(void) {
Set_CS;
}
__inline void lld_lcdReadStream(uint16_t *buffer, size_t size) {
uint16_t i;
volatile uint16_t dummy;
#ifdef LCD_USE_GPIO
dummy = lld_lcdReadGPIO();
for(i = 0; i < size; i++)
buffer[i] = lld_lcdReadGPIO();
#endif
#ifdef LCD_USE_SPI
/* ToDo */
#endif
#ifdef LCD_USE_FSMC
dummy = LCD_RAM;
for(i = 0; i < size; i++)
buffer[i] = LCD_RAM;
#endif
}
#endif
#ifdef LCD_USE_SPI
/* TODO */
#endif
#ifdef LCD_USE_FSMC
#define LCD_REG (*((volatile uint16_t *) 0x60000000)) /* RS = 0 */
#define LCD_RAM (*((volatile uint16_t *) 0x60020000)) /* RS = 1 */
static __inline void lld_lcdWriteIndex(uint16_t index) {
LCD_REG = index;
}
static __inline void lld_lcdWriteData(uint16_t data) {
LCD_RAM = data;
}
static __inline void lld_lcdWriteReg(uint16_t lcdReg,uint16_t lcdRegValue) {
LCD_REG = lcdReg;
LCD_RAM = lcdRegValue;
}
static __inline uint16_t lld_lcdReadData(void) {
return (LCD_RAM);
}
static __inline uint16_t lld_lcdReadReg(uint16_t lcdReg) {
LCD_REG = lcdReg;
volatile uint16_t dummy = LCD_RAM;
return (LCD_RAM);
}
__inline void lld_lcdWriteStreamStart(void) {
LCD_REG = 0x0022;
}
__inline void lld_lcdWriteStreamStop(void) {
}
__inline void lld_lcdWriteStream(uint16_t *buffer, uint16_t size) {
uint16_t i;
for(i = 0; i < size; i++)
LCD_RAM = buffer[i];
}
__inline void lld_lcdReadStreamStart(void) {
LCD_REG = 0x0022;
}
__inline void lld_lcdReadStreamStop(void) {
}
__inline void lld_lcdReadStream(uint16_t *buffer, size_t size) {
uint16_t i;
/* throw away first value read */
volatile uint16_t dummy = LCD_RAM;
for(i = 0; i < size; i++) {
buffer[i] = LCD_RAM;
}
}
#endif
static __inline void lld_lcdDelay(uint16_t us) {
chThdSleepMicroseconds(us);
}
void lld_lcdSetPowerMode(uint8_t powerMode) {
switch(powerMode) {
case powerOff:
lld_lcdWriteReg(0x0010, 0x0000); // leave sleep mode
lld_lcdWriteReg(0x0007, 0x0000); // halt operation
lld_lcdWriteReg(0x0000, 0x0000); // turn off oszillator
lld_lcdWriteReg(0x0010, 0x0001); // enter sleepmode
break;
case powerOn:
lld_lcdWriteReg(0x0010, 0x0000); // leave sleep mode
lld_lcdInit();
break;
case sleepOn:
lld_lcdWriteReg(0x0010, 0x0001); // enter sleep mode
break;
case sleepOff:
lld_lcdWriteReg(0x0010, 0x0000); // leave sleep mode
break;
}
}
void lld_lcdSetCursor(uint16_t x, uint16_t y) {
/* Reg 0x004E is an 8 bit value
* Reg 0x004F is 9 bit
* Use a bit mask to make sure they are not set too high
*/
if(PORTRAIT) {
lld_lcdWriteReg(0x004e, x & 0x00FF);
lld_lcdWriteReg(0x004f, y & 0x01FF);
} else if(LANDSCAPE) {
lld_lcdWriteReg(0x004e, y & 0x00FF);
lld_lcdWriteReg(0x004f, x & 0x01FF);
}
}
void lld_lcdSetOrientation(uint8_t newOrientation) {
orientation = newOrientation;
switch(orientation) {
case portrait:
lld_lcdWriteReg(0x0001, 0x2B3F);
lld_lcdWriteReg(0x0011, 0x6070);
lcd_height = SCREEN_HEIGHT;
lcd_width = SCREEN_WIDTH;
break;
case landscape:
lld_lcdWriteReg(0x0001, 0x293F);
lld_lcdWriteReg(0x0011, 0x6078);
lcd_height = SCREEN_WIDTH;
lcd_width = SCREEN_HEIGHT;
break;
case portraitInv:
lld_lcdWriteReg(0x0001, 0x693F);
lld_lcdWriteReg(0x0011, 0x6040);
lcd_height = SCREEN_HEIGHT;
lcd_width = SCREEN_WIDTH;
break;
case landscapeInv:
lld_lcdWriteReg(0x0001, 0x6B3F);
lld_lcdWriteReg(0x0011, 0x6048);
lcd_height = SCREEN_WIDTH;
lcd_width = SCREEN_HEIGHT;
break;
}
}
void lld_lcdSetWindow(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1) {
lld_lcdSetCursor(x0, y0);
/* Reg 0x44 - Horizontal RAM address position
* Upper Byte - HEA
* Lower Byte - HSA
* 0 <= HSA <= HEA <= 0xEF
* Reg 0x45,0x46 - Vertical RAM address position
* Lower 9 bits gives 0-511 range in each value
* 0 <= Reg(0x45) <= Reg(0x46) <= 0x13F
*/
switch(lcdGetOrientation()) {
case portrait:
lld_lcdWriteReg(0x44, (((x1-1) << 8) & 0xFF00 ) | (x0 & 0x00FF));
lld_lcdWriteReg(0x45, y0 & 0x01FF);
lld_lcdWriteReg(0x46, (y1-1) & 0x01FF);
break;
case landscape:
lld_lcdWriteReg(0x44, (((y1-1) << 8) & 0xFF00) | (y1 & 0x00FF));
lld_lcdWriteReg(0x45, x0 & 0x01FF);
lld_lcdWriteReg(0x46, (x1-1) & 0x01FF);
break;
case portraitInv:
lld_lcdWriteReg(0x44, (((x1-1) << 8) & 0xFF00) | (x0 & 0x00FF));
lld_lcdWriteReg(0x45, y0 & 0x01FF);
lld_lcdWriteReg(0x46, (y1-1) & 0x01FF);
break;
case landscapeInv:
lld_lcdWriteReg(0x44, (((y1-1) << 8) & 0xFF00) | (y1 & 0x00FF));
lld_lcdWriteReg(0x45, x0 & 0x01FF);
lld_lcdWriteReg(0x46, (x1-1) & 0x01FF);
break;
}
}
void lld_lcdFillArea(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, uint16_t color) {
uint32_t index = 0, area;
area = ((x1-x0)*(y1-y0));
lld_lcdSetWindow(x0, y0, x1, y1);
lld_lcdWriteStreamStart();
for(index = 0; index < area; index++)
lld_lcdWriteData(color);
lld_lcdWriteStreamStop();
}
void lld_lcdClear(uint16_t color) {
uint32_t index = 0;
lld_lcdSetCursor(0, 0);
lld_lcdWriteStreamStart();
for(index = 0; index < SCREEN_WIDTH * SCREEN_HEIGHT; index++)
lld_lcdWriteData(color);
lld_lcdWriteStreamStop();
}
uint16_t lld_lcdGetPixelColor(uint16_t x, uint16_t y) {
uint16_t dummy;
lld_lcdSetCursor(x,y);
lld_lcdWriteStreamStart();
dummy = lld_lcdReadData();
dummy = lld_lcdReadData();
lld_lcdWriteStreamStop();
return dummy;
}
void lld_lcdDrawPixel(uint16_t x, uint16_t y, uint16_t color) {
lld_lcdSetCursor(x, y);
lld_lcdWriteReg(0x0022, color);
}
void lld_lcdInit(void) {
#ifdef LCD_USE_FSMC
/* FSMC setup. TODO: this only works for STM32F1 */
rccEnableAHB(RCC_AHBENR_FSMCEN, 0);
int FSMC_Bank = 0;
/* timing structure */
/* from datasheet:
address setup: 0ns
address hold: 0ns
Data setup: 5ns
Data hold: 5ns
Data access: 250ns
output hold: 100ns
*/
FSMC_Bank1->BTCR[FSMC_Bank+1] = FSMC_BTR1_ADDSET_1 | FSMC_BTR1_DATAST_1;
/* Bank1 NOR/SRAM control register configuration */
FSMC_Bank1->BTCR[FSMC_Bank] = FSMC_BCR1_MWID_0 | FSMC_BCR1_WREN | FSMC_BCR1_MBKEN;
#endif
DeviceCode = lld_lcdReadReg(0x0000);
lld_lcdWriteReg(0x0000,0x0001); lld_lcdDelay(5);
lld_lcdWriteReg(0x0003,0xA8A4); lld_lcdDelay(5);
lld_lcdWriteReg(0x000C,0x0000); lld_lcdDelay(5);
lld_lcdWriteReg(0x000D,0x080C); lld_lcdDelay(5);
lld_lcdWriteReg(0x000E,0x2B00); lld_lcdDelay(5);
lld_lcdWriteReg(0x001E,0x00B0); lld_lcdDelay(5);
lld_lcdWriteReg(0x0001,0x2B3F); lld_lcdDelay(5);
lld_lcdWriteReg(0x0002,0x0600); lld_lcdDelay(5);
lld_lcdWriteReg(0x0010,0x0000); lld_lcdDelay(5);
lld_lcdWriteReg(0x0011,0x6070); lld_lcdDelay(5);
lld_lcdWriteReg(0x0005,0x0000); lld_lcdDelay(5);
lld_lcdWriteReg(0x0006,0x0000); lld_lcdDelay(5);
lld_lcdWriteReg(0x0016,0xEF1C); lld_lcdDelay(5);
lld_lcdWriteReg(0x0017,0x0003); lld_lcdDelay(5);
lld_lcdWriteReg(0x0007,0x0133); lld_lcdDelay(5);
lld_lcdWriteReg(0x000B,0x0000); lld_lcdDelay(5);
lld_lcdWriteReg(0x000F,0x0000); lld_lcdDelay(5);
lld_lcdWriteReg(0x0041,0x0000); lld_lcdDelay(5);
lld_lcdWriteReg(0x0042,0x0000); lld_lcdDelay(5);
lld_lcdWriteReg(0x0048,0x0000); lld_lcdDelay(5);
lld_lcdWriteReg(0x0049,0x013F); lld_lcdDelay(5);
lld_lcdWriteReg(0x004A,0x0000); lld_lcdDelay(5);
lld_lcdWriteReg(0x004B,0x0000); lld_lcdDelay(5);
lld_lcdWriteReg(0x0044,0xEF00); lld_lcdDelay(5);
lld_lcdWriteReg(0x0045,0x0000); lld_lcdDelay(5);
lld_lcdWriteReg(0x0046,0x013F); lld_lcdDelay(5);
lld_lcdWriteReg(0x0030,0x0707); lld_lcdDelay(5);
lld_lcdWriteReg(0x0031,0x0204); lld_lcdDelay(5);
lld_lcdWriteReg(0x0032,0x0204); lld_lcdDelay(5);
lld_lcdWriteReg(0x0033,0x0502); lld_lcdDelay(5);
lld_lcdWriteReg(0x0034,0x0507); lld_lcdDelay(5);
lld_lcdWriteReg(0x0035,0x0204); lld_lcdDelay(5);
lld_lcdWriteReg(0x0036,0x0204); lld_lcdDelay(5);
lld_lcdWriteReg(0x0037,0x0502); lld_lcdDelay(5);
lld_lcdWriteReg(0x003A,0x0302); lld_lcdDelay(5);
lld_lcdWriteReg(0x003B,0x0302); lld_lcdDelay(5);
lld_lcdWriteReg(0x0023,0x0000); lld_lcdDelay(5);
lld_lcdWriteReg(0x0024,0x0000); lld_lcdDelay(5);
lld_lcdWriteReg(0x0025,0x8000); lld_lcdDelay(5);
lld_lcdWriteReg(0x004f,0x0000); lld_lcdDelay(5);
lld_lcdWriteReg(0x004e,0x0000); lld_lcdDelay(5);
}
uint16_t lld_lcdGetOrientation(void) {
return orientation;
}
uint16_t lld_lcdGetHeight(void) {
return lcd_height;
}
uint16_t lld_lcdGetWidth(void) {
return lcd_width;
}
/* a positive lines value shifts the screen up, negative down */
void lld_lcdVerticalScroll(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, int16_t lines) {
uint16_t row0, row1;
uint16_t i;
lld_lcdSetWindow(x0, y0, x1, y1);
for(i = 0; i < ((y1-y0) - abs(lines)); i++) {
if(lines > 0) {
row0 = y0 + i + lines;
row1 = y0 + i;
} else {
row0 = (y1 - i - 1) + lines;
row1 = (y1 - i - 1);
}
/* read row0 into the buffer and then write at row1*/
lld_lcdSetWindow(x0, row0, x1, row0);
lld_lcdReadStreamStart();
lld_lcdReadStream(buf, x1-x0);
lld_lcdReadStreamStop();
lld_lcdSetWindow(x0, row1, x1, row1);
lld_lcdWriteStreamStart();
lld_lcdWriteStream(buf, x1-x0);
lld_lcdWriteStreamStop();
}
}
#endif