ugfx/drivers/gdisp/S6D1121/s6d1121_lld.c.h

255 lines
8.1 KiB
C

/*
ChibiOS/GFX - Copyright (C) 2012
Joel Bodenmann aka Tectu <joel@unormal.org>
This file is part of ChibiOS/GFX.
ChibiOS/GFX is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
ChibiOS/GFX is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef S6D1121_H
#define S6D1121_H
// I/O assignments
#define GDISP_BL_GPIO GPIOB
#define GDISP_BL_PIN 8
#define GDISP_CS_GPIO GPIOD
#define GDISP_CS_PIN 7
#define GDISP_RS_GPIO GPIOD
#define GDISP_RS_PIN 11
#define GDISP_RST_GPIO GPIOD
#define GDISP_RST_PIN 10
#define GDISP_RD_GPIO GPIOD
#define GDISP_RD_PIN 9
#define GDISP_WR_GPIO GPIOD
#define GDISP_WR_PIN 8
#define GDISP_D0_GPIO GPIOD
#define GDISP_D4_GPIO GPIOE
/* all interfaces use RST via GPIO */
/* TODO: option to disable RST; assumes RST is tied high */
#define GDISP_RST_LOW palClearPad(GDISP_RST_GPIO, GDISP_RST_PIN)
#define GDISP_RST_HIGH palSetPad(GDISP_RST_GPIO, GDISP_RST_PIN)
#define s6d1121_delay(n) halPolledDelay(MS2RTT(n));
#if defined(GDISP_USE_GPIO)
#define GDISP_CS_LOW palClearPad(GDISP_CS_GPIO, GDISP_CS_PIN)
#define GDISP_CS_HIGH palSetPad(GDISP_CS_GPIO, GDISP_CS_PIN)
#define GDISP_RS_LOW palClearPad(GDISP_RS_GPIO, GDISP_RS_PIN)
#define GDISP_RS_HIGH palSetPad(GDISP_RS_GPIO, GDISP_RS_PIN)
#define GDISP_RD_LOW palClearPad(GDISP_RD_GPIO, GDISP_RD_PIN)
#define GDISP_RD_HIGH palSetPad(GDISP_RD_GPIO, GDISP_RD_PIN)
#define GDISP_WR_LOW palClearPad(GDISP_WR_GPIO, GDISP_WR_PIN)
#define GDISP_WR_HIGH palSetPad(GDISP_WR_GPIO, GDISP_WR_PIN)
#define GDISP_BL_LOW palClearPad(GDISP_BL_GPIO, GDISP_BL_PIN)
#define GDISP_BL_HIGH palSetPad(GDISP_BL_GPIO, GDISP_BL_PIN)
static inline void lld_lcddelay(void) { asm volatile ("nop"); asm volatile ("nop"); }
static inline void lld_lcdwrite(uint16_t db) {
GDISP_D4_GPIO->BSRR.W=((~db&0xFFF0)<<16)|(db&0xFFF0);
GDISP_D0_GPIO->BSRR.W=((~db&0x000F)<<16)|(db&0x000F);
GDISP_WR_LOW;
lld_lcddelay();
GDISP_WR_HIGH;
}
static __inline uint16_t lld_lcdReadData(void) {
uint16_t value=0;
GDISP_RS_HIGH; GDISP_WR_HIGH; GDISP_RD_LOW;
#ifndef STM32F4XX
// change pin mode to digital input
GDISP_DATA_PORT->CRH = 0x47444444;
GDISP_DATA_PORT->CRL = 0x47444444;
#endif
#ifndef STM32F4XX
// change pin mode back to digital output
GDISP_DATA_PORT->CRH = 0x33333333;
GDISP_DATA_PORT->CRL = 0x33333333;
#endif
GDISP_RD_HIGH;
return value;
}
static __inline uint16_t lld_lcdReadReg(uint16_t lcdReg) {
uint16_t lcdRAM;
GDISP_CS_LOW; GDISP_RS_LOW;
lld_lcdwrite(lcdReg);
GDISP_RS_HIGH;
lcdRAM = lld_lcdReadData();
GDISP_CS_HIGH;
return lcdRAM;
}
static void lld_lcdWriteIndex(uint16_t lcdReg) {
GDISP_RS_LOW;
lld_lcdwrite(lcdReg);
GDISP_RS_HIGH;
}
static void lld_lcdWriteData(uint16_t lcdData) {
lld_lcdwrite(lcdData);
}
static void lld_lcdWriteReg(uint16_t lcdReg, uint16_t lcdRegValue) {
GDISP_CS_LOW;
lld_lcdWriteIndex(lcdReg);
lld_lcdWriteData(lcdRegValue);
GDISP_CS_HIGH;
}
static __inline void lld_lcdWriteStreamStart(void) {
GDISP_CS_LOW;
lld_lcdWriteIndex(0x0022);
}
static __inline void lld_lcdWriteStreamStop(void) {
GDISP_CS_HIGH;
}
static __inline void lld_lcdWriteStream(uint16_t *buffer, uint16_t size) {
uint16_t i;
for(i = 0; i < size; i++) { lld_lcdwrite(buffer[i]); }
}
static __inline void lld_lcdReadStreamStart(void) { /* TODO */ }
static __inline void lld_lcdReadStreamStop(void) { /* TODO */ }
static __inline void lld_lcdReadStream(uint16_t *buffer, size_t size) {
(void)buffer;
(void)size;
/* TODO */
}
#elif defined(GDISP_USE_FSMC)
#define GDISP_REG (*((volatile uint16_t *) 0x60000000)) /* RS = 0 */
#define GDISP_RAM (*((volatile uint16_t *) 0x60020000)) /* RS = 1 */
static __inline void lld_lcdWriteIndex(uint16_t index) { GDISP_REG = index; }
static __inline void lld_lcdWriteData(uint16_t data) { GDISP_RAM = data; }
static __inline void lld_lcdWriteReg(uint16_t lcdReg,uint16_t lcdRegValue) {
GDISP_REG = lcdReg;
GDISP_RAM = lcdRegValue;
}
static __inline uint16_t lld_lcdReadData(void) { return (GDISP_RAM); }
static __inline uint16_t lld_lcdReadReg(uint16_t lcdReg) {
GDISP_REG = lcdReg;
return GDISP_RAM;
}
static __inline void lld_lcdWriteStreamStart(void) { GDISP_REG = 0x0022; }
static __inline void lld_lcdWriteStreamStop(void) {}
static __inline void lld_lcdWriteStream(uint16_t *buffer, uint16_t size) {
uint16_t i;
for(i = 0; i < size; i++) GDISP_RAM = buffer[i];
}
static __inline void lld_lcdReadStreamStart(void) { GDISP_REG = 0x0022; }
static __inline void lld_lcdReadStreamStop(void) {}
static __inline void lld_lcdReadStream(uint16_t *buffer, size_t size) {
uint16_t i;
volatile uint16_t dummy;
/* throw away first value read */
dummy = GDISP_RAM;
for(i = 0; i < size; i++) buffer[i] = GDISP_RAM;
}
#elif defined(GDISP_USE_SPI)
#error "gdispS6d1121: GDISP_USE_SPI not implemented yet"
#endif
static void lld_lcdSetCursor(coord_t x, coord_t y) {
/* R20h - 8 bit
* R21h - 9 bit
*/
switch(GDISP.Orientation) {
case GDISP_ROTATE_0:
lld_lcdWriteReg(0x0020, x & 0x00FF);
lld_lcdWriteReg(0x0021, y & 0x01FF);
break;
case GDISP_ROTATE_90:
/* Note X has already been mirrored, so we do it directly */
lld_lcdWriteReg(0x0020, y & 0x00FF);
lld_lcdWriteReg(0x0021, x & 0x01FF);
break;
case GDISP_ROTATE_180:
lld_lcdWriteReg(0x0020, (GDISP_SCREEN_WIDTH - 1 - x) & 0x00FF);
lld_lcdWriteReg(0x0021, (GDISP_SCREEN_HEIGHT - 1 - y) & 0x01FF);
break;
case GDISP_ROTATE_270:
lld_lcdWriteReg(0x0020, (GDISP_SCREEN_WIDTH - 1 - y) & 0x00FF);
lld_lcdWriteReg(0x0021, (GDISP_SCREEN_HEIGHT - 1 - x) & 0x01FF);
break;
}
}
static void lld_lcdSetViewPort(uint16_t x, uint16_t y, uint16_t cx, uint16_t cy) {
/* HSA / HEA are 8 bit
* VSA / VEA are 9 bit
* use masks 0x00FF and 0x01FF to enforce this
*/
switch(GDISP.Orientation) {
case GDISP_ROTATE_0:
lld_lcdWriteReg(0x46, (((x + cx - 1) << 8) & 0xFF00 ) |
(x & 0x00FF));
lld_lcdWriteReg(0x48, y & 0x01FF);
lld_lcdWriteReg(0x47, (y + cy - 1) & 0x01FF);
break;
case GDISP_ROTATE_90:
lld_lcdWriteReg(0x46, (((y + cy - 1) << 8) & 0xFF00) |
(y & 0x00FF));
lld_lcdWriteReg(0x48, x & 0x01FF);
lld_lcdWriteReg(0x47, (x + cx - 1) & 0x01FF);
break;
case GDISP_ROTATE_180:
lld_lcdWriteReg(0x46, (((GDISP_SCREEN_WIDTH - x - 1) & 0x00FF) << 8) |
((GDISP_SCREEN_WIDTH - (x + cx)) & 0x00FF));
lld_lcdWriteReg(0x48, (GDISP_SCREEN_HEIGHT - (y + cy)) & 0x01FF);
lld_lcdWriteReg(0x47, (GDISP_SCREEN_HEIGHT- y - 1) & 0x01FF);
break;
case GDISP_ROTATE_270:
lld_lcdWriteReg(0x46, (((GDISP_SCREEN_WIDTH - y - 1) & 0x00FF) << 8) |
((GDISP_SCREEN_WIDTH - (y + cy)) & 0x00FF));
lld_lcdWriteReg(0x48, (GDISP_SCREEN_HEIGHT - (x + cx)) & 0x01FF);
lld_lcdWriteReg(0x47, (GDISP_SCREEN_HEIGHT - x - 1) & 0x01FF);
break;
}
lld_lcdSetCursor(x, y);
}
static void lld_lcdResetViewPort(void) {
switch(GDISP.Orientation) {
case GDISP_ROTATE_0:
case GDISP_ROTATE_180:
lld_lcdSetViewPort(0, 0, GDISP_SCREEN_WIDTH, GDISP_SCREEN_HEIGHT);
break;
case GDISP_ROTATE_90:
case GDISP_ROTATE_270:
lld_lcdSetViewPort(0, 0, GDISP_SCREEN_HEIGHT, GDISP_SCREEN_WIDTH);
break;
}
}
#endif /* S6D1121_H */