ugfx/drivers/gdisp/ED060SC4/gdisp_lld_ED060SC4.c
2013-11-17 23:32:19 +10:00

627 lines
14 KiB
C

/*
* This file is subject to the terms of the GFX License. If a copy of
* the license was not distributed with this file, you can obtain one at:
*
* http://ugfx.org/license.html
*/
/**
* @file drivers/gdisp/ED060SC4/gdisp_lld.c
* @brief GDISP Graphics Driver for the E-ink panel ED060SC4.
*/
#include "gfx.h"
#if GFX_USE_GDISP
#define GDISP_DRIVER_VMT GDISPVMT_ED060SC4
#include "../drivers/gdisp/ED060SC4/gdisp_lld_config.h"
#include "gdisp/lld/gdisp_lld.h"
#include "board_ED060SC4.h"
/*===========================================================================*/
/* Driver local definitions. */
/*===========================================================================*/
#ifndef GDISP_SCREEN_HEIGHT
#define GDISP_SCREEN_HEIGHT 600
#endif
#ifndef GDISP_SCREEN_WIDTH
#define GDISP_SCREEN_WIDTH 800
#endif
/* Number of pixels per byte */
#ifndef EINK_PPB
#define EINK_PPB 4
#endif
/* Delay for generating clock pulses.
* Unit is approximate clock cycles of the CPU (0 to 15).
* This should be atleast 50 ns.
*/
#ifndef EINK_CLOCKDELAY
#define EINK_CLOCKDELAY 0
#endif
/* Width of one framebuffer block.
* Must be divisible by EINK_PPB and evenly divide GDISP_SCREEN_WIDTH. */
#ifndef EINK_BLOCKWIDTH
#define EINK_BLOCKWIDTH 20
#endif
/* Height of one framebuffer block.
* Must evenly divide GDISP_SCREEN_WIDTH. */
#ifndef EINK_BLOCKHEIGHT
#define EINK_BLOCKHEIGHT 20
#endif
/* Number of block buffers to use for framebuffer emulation. */
#ifndef EINK_NUMBUFFERS
#define EINK_NUMBUFFERS 40
#endif
/* Do a "blinking" clear, i.e. clear to opposite polarity first.
* This reduces the image persistence. */
#ifndef EINK_BLINKCLEAR
#define EINK_BLINKCLEAR TRUE
#endif
/* Number of passes to use when clearing the display */
#ifndef EINK_CLEARCOUNT
#define EINK_CLEARCOUNT 10
#endif
/* Number of passes to use when writing to the display */
#ifndef EINK_WRITECOUNT
#define EINK_WRITECOUNT 4
#endif
/*===========================================================================*/
/* Driver local functions. */
/*===========================================================================*/
#define PRIV(g) ((drvPriv *)g->priv)
/** Delay between signal changes, to give time for IO pins to change state. */
static inline void clockdelay(void)
{
#if EINK_CLOCKDELAY & 1
asm("nop");
#endif
#if EINK_CLOCKDELAY & 2
asm("nop");
asm("nop");
#endif
#if EINK_CLOCKDELAY & 4
asm("nop");
asm("nop");
asm("nop");
asm("nop");
#endif
#if EINK_CLOCKDELAY & 8
asm("nop");
asm("nop");
asm("nop");
asm("nop");
asm("nop");
asm("nop");
asm("nop");
asm("nop");
#endif
}
/** Fast vertical clock pulse for gate driver, used during initializations */
static void vclock_quick(GDisplay *g)
{
setpin_ckv(g, TRUE);
eink_delay(1);
setpin_ckv(g, FALSE);
eink_delay(4);
}
/** Horizontal clock pulse for clocking data into source driver */
static void hclock(GDisplay *g)
{
clockdelay();
setpin_cl(g, TRUE);
clockdelay();
setpin_cl(g, FALSE);
}
/** Start a new vertical gate driver scan from top.
* Note: Does not clear any previous bits in the shift register,
* so you should always scan through the whole display before
* starting a new scan.
*/
static void vscan_start(GDisplay *g)
{
setpin_gmode(g, TRUE);
vclock_quick(g);
setpin_spv(g, FALSE);
vclock_quick(g);
setpin_spv(g, TRUE);
vclock_quick(g);
}
/** Waveform for strobing a row of data onto the display.
* Attempts to minimize the leaking of color to other rows by having
* a long idle period after a medium-length strobe period.
*/
static void vscan_write(GDisplay *g)
{
setpin_ckv(g, TRUE);
setpin_oe(g, TRUE);
eink_delay(5);
setpin_oe(g, FALSE);
setpin_ckv(g, FALSE);
eink_delay(200);
}
/** Waveform used when clearing the display. Strobes a row of data to the
* screen, but does not mind some of it leaking to other rows.
*/
static void vscan_bulkwrite(GDisplay *g)
{
setpin_ckv(g, TRUE);
eink_delay(20);
setpin_ckv(g, FALSE);
eink_delay(200);
}
/** Waveform for skipping a vertical row without writing anything.
* Attempts to minimize the amount of change in any row.
*/
static void vscan_skip(GDisplay *g)
{
setpin_ckv(g, TRUE);
eink_delay(1);
setpin_ckv(g, FALSE);
eink_delay(100);
}
/** Stop the vertical scan. The significance of this escapes me, but it seems
* necessary or the next vertical scan may be corrupted.
*/
static void vscan_stop(GDisplay *g)
{
setpin_gmode(g, FALSE);
vclock_quick(g);
vclock_quick(g);
vclock_quick(g);
vclock_quick(g);
vclock_quick(g);
}
/** Start updating the source driver data (from left to right). */
static void hscan_start(GDisplay *g)
{
/* Disable latching and output enable while we are modifying the row. */
setpin_le(g, FALSE);
setpin_oe(g, FALSE);
/* The start pulse should remain low for the duration of the row. */
setpin_sph(g, FALSE);
}
/** Write data to the horizontal row. */
static void hscan_write(GDisplay *g, const uint8_t *data, int count)
{
while (count--)
{
/* Set the next byte on the data pins */
setpins_data(g, *data++);
/* Give a clock pulse to the shift register */
hclock(g);
}
}
/** Finish and transfer the row to the source drivers.
* Does not set the output enable, so the drivers are not yet active. */
static void hscan_stop(GDisplay *g)
{
/* End the scan */
setpin_sph(g, TRUE);
hclock(g);
/* Latch the new data */
setpin_le(g, TRUE);
clockdelay();
setpin_le(g, FALSE);
}
/** Turn on the power to the E-Ink panel, observing proper power sequencing. */
static void power_on(GDisplay *g)
{
unsigned i;
/* First the digital power supply and signal levels. */
setpower_vdd(g, TRUE);
setpin_le(g, FALSE);
setpin_oe(g, FALSE);
setpin_cl(g, FALSE);
setpin_sph(g, TRUE);
setpins_data(g, 0);
setpin_ckv(g, FALSE);
setpin_gmode(g, FALSE);
setpin_spv(g, TRUE);
/* Min. 100 microsecond delay after digital supply */
gfxSleepMicroseconds(100);
/* Then negative voltages and min. 1000 microsecond delay. */
setpower_vneg(g, TRUE);
gfxSleepMicroseconds(1000);
/* Finally the positive voltages. */
setpower_vpos(g, TRUE);
/* Clear the vscan shift register */
vscan_start(g);
for (i = 0; i < GDISP_SCREEN_HEIGHT; i++)
vclock_quick(g);
vscan_stop(g);
}
/** Turn off the power, observing proper power sequencing. */
static void power_off(GDisplay *g)
{
/* First the high voltages */
setpower_vpos(g, FALSE);
setpower_vneg(g, FALSE);
/* Wait for any capacitors to drain */
gfxSleepMilliseconds(100);
/* Then put all signals and digital supply to ground. */
setpin_le(g, FALSE);
setpin_oe(g, FALSE);
setpin_cl(g, FALSE);
setpin_sph(g, FALSE);
setpins_data(g, 0);
setpin_ckv(g, FALSE);
setpin_gmode(g, FALSE);
setpin_spv(g, FALSE);
setpower_vdd(g, FALSE);
}
/* ====================================
* Framebuffer emulation layer
* ==================================== */
#if EINK_PPB == 4
#define PIXELMASK 3
#define PIXEL_WHITE 2
#define PIXEL_BLACK 1
#define BYTE_WHITE 0xAA
#define BYTE_BLACK 0x55
#else
#error Unsupported EINK_PPB value.
#endif
#if GDISP_SCREEN_HEIGHT % EINK_BLOCKHEIGHT != 0
#error GDISP_SCREEN_HEIGHT must be evenly divisible by EINK_BLOCKHEIGHT
#endif
#if GDISP_SCREEN_WIDTH % EINK_BLOCKWIDTH != 0
#error GDISP_SCREEN_WIDTH must be evenly divisible by EINK_BLOCKWIDTH
#endif
#if EINK_BLOCKWIDTH % EINK_PPB != 0
#error EINK_BLOCKWIDTH must be evenly divisible by EINK_PPB
#endif
#if EINK_NUMBUFFERS > 254
#error EINK_NUMBUFFERS must be at most 254.
#endif
#define BLOCKS_Y (GDISP_SCREEN_HEIGHT / EINK_BLOCKHEIGHT)
#define BLOCKS_X (GDISP_SCREEN_WIDTH / EINK_BLOCKWIDTH)
#define WIDTH_BYTES (EINK_BLOCKWIDTH / EINK_PPB)
/* Buffers that store the data for a small area of the display. */
typedef struct {
uint8_t data[EINK_BLOCKHEIGHT][WIDTH_BYTES];
} block_t;
typedef struct drvPriv {
uint8_t g_next_block; /* Index of the next free block buffer. */
block_t g_blocks[EINK_NUMBUFFERS];
/* Map that stores the buffers associated to each area of the display.
* Value of 0 means that the block is not allocated.
* Other values are the index in g_blocks + 1.
*/
uint8_t g_blockmap[BLOCKS_Y][BLOCKS_X];
} drvPriv;
/** Check if the row contains any allocated blocks. */
static bool_t blocks_on_row(GDisplay *g, unsigned by)
{
unsigned bx;
for (bx = 0; bx < BLOCKS_X; bx++)
{
if (PRIV(g)->g_blockmap[by][bx] != 0)
{
return TRUE;
}
}
return FALSE;
}
/** Write out a block row. */
static void write_block_row(GDisplay *g, unsigned by)
{
unsigned bx, dy, dx;
for (dy = 0; dy < EINK_BLOCKHEIGHT; dy++)
{
hscan_start(g);
for (bx = 0; bx < BLOCKS_X; bx++)
{
if (PRIV(g)->g_blockmap[by][bx] == 0)
{
for (dx = 0; dx < WIDTH_BYTES; dx++)
{
const uint8_t dummy = 0;
hscan_write(g, &dummy, 1);
}
}
else
{
block_t *block = &PRIV(g)->g_blocks[PRIV(g)->g_blockmap[by][bx] - 1];
hscan_write(g, &block->data[dy][0], WIDTH_BYTES);
}
}
hscan_stop(g);
vscan_write(g);
}
}
/** Clear the block map, i.e. deallocate all blocks */
static void clear_block_map(GDisplay *g)
{
unsigned bx, by;
for (by = 0; by < BLOCKS_Y; by++)
{
for (bx = 0; bx < BLOCKS_X; bx++)
{
PRIV(g)->g_blockmap[by][bx] = 0;
}
}
PRIV(g)->g_next_block = 0;
}
/** Initialize a newly allocated block. */
static void zero_block(block_t *block)
{
unsigned dx, dy;
for (dy = 0; dy < EINK_BLOCKHEIGHT; dy++)
{
for (dx = 0; dx < WIDTH_BYTES; dx++)
{
block->data[dy][dx] = 0;
}
}
}
/** Allocate a buffer
* Automatically flushes if all buffers are full. */
static block_t *alloc_buffer(GDisplay *g, unsigned bx, unsigned by)
{
block_t *result;
drvPriv *priv;
priv = PRIV(g);
if (priv->g_blockmap[by][bx] == 0)
{
if (priv->g_next_block >= EINK_NUMBUFFERS)
gdisp_lld_flush(g);
result = &priv->g_blocks[priv->g_next_block];
priv->g_blockmap[by][bx] = priv->g_next_block + 1;
priv->g_next_block++;
zero_block(result);
return result;
}
else
{
result = &priv->g_blocks[priv->g_blockmap[by][bx] - 1];
return result;
}
}
/*===========================================================================*/
/* Driver exported functions. */
/*===========================================================================*/
LLDSPEC bool_t gdisp_lld_init(GDisplay *g) {
g->priv = gfxAlloc(sizeof(drvPriv));
init_board(g);
/* Make sure that all the pins are in "off" state.
* Having any pin high could cause voltage leaking to the
* display, which in turn causes the image to leak slowly away.
*/
power_off(g);
clear_block_map(g);
/* Initialise the GDISP structure */
g->g.Width = GDISP_SCREEN_WIDTH;
g->g.Height = GDISP_SCREEN_HEIGHT;
g->g.Orientation = GDISP_ROTATE_0;
g->g.Powermode = powerOn;
g->g.Backlight = 100;
g->g.Contrast = 100;
return TRUE;
}
#if GDISP_HARDWARE_FLUSH
LLDSPEC void gdisp_lld_flush(GDisplay *g) {
unsigned by, dy, i;
for (i = 0; i < EINK_WRITECOUNT; i++) {
vscan_start(g);
for (by = 0; by < BLOCKS_Y; by++) {
if (!blocks_on_row(g, by)) {
/* Skip the whole row of blocks. */
for (dy = 0; dy < EINK_BLOCKHEIGHT; dy++)
vscan_skip(g);
} else {
/* Write out the blocks. */
write_block_row(g, by);
}
}
vscan_stop(g);
}
clear_block_map(g);
}
#endif
#if GDISP_HARDWARE_DRAWPIXEL
void gdisp_lld_draw_pixel(GDisplay *g) {
block_t *block;
uint8_t byte;
unsigned bx, by, dx, dy;
uint8_t bitpos;
switch(g->g.Orientation) {
default:
case GDISP_ROTATE_0:
bx = g->p.x / EINK_BLOCKWIDTH;
dx = g->p.x % EINK_BLOCKWIDTH;
by = g->p.y / EINK_BLOCKHEIGHT;
dy = g->p.y % EINK_BLOCKHEIGHT;
break;
case GDISP_ROTATE_90:
bx = g->p.y / EINK_BLOCKWIDTH;
dx = g->p.y % EINK_BLOCKWIDTH;
by = (GDISP_SCREEN_HEIGHT-1 - g->p.x) / EINK_BLOCKHEIGHT;
dy = (GDISP_SCREEN_HEIGHT-1 - g->p.x) % EINK_BLOCKHEIGHT;
break;
case GDISP_ROTATE_180:
bx = (GDISP_SCREEN_WIDTH-1 - g->p.x) / EINK_BLOCKWIDTH;
dx = (GDISP_SCREEN_WIDTH-1 - g->p.x) % EINK_BLOCKWIDTH;
by = (GDISP_SCREEN_HEIGHT-1 - g->p.y) / EINK_BLOCKHEIGHT;
dy = (GDISP_SCREEN_HEIGHT-1 - g->p.y) % EINK_BLOCKHEIGHT;
break;
case GDISP_ROTATE_270:
bx = (GDISP_SCREEN_WIDTH-1 - g->p.y) / EINK_BLOCKWIDTH;
dx = (GDISP_SCREEN_WIDTH-1 - g->p.y) % EINK_BLOCKWIDTH;
by = g->p.x / EINK_BLOCKHEIGHT;
dy = g->p.x % EINK_BLOCKHEIGHT;
break;
}
block = alloc_buffer(g, bx, by);
bitpos = (6 - 2 * (dx % EINK_PPB));
byte = block->data[dy][dx / EINK_PPB];
byte &= ~(PIXELMASK << bitpos);
if (gdispColor2Native(g->p.color) != Black)
byte |= PIXEL_WHITE << bitpos;
else
byte |= PIXEL_BLACK << bitpos;
block->data[dy][dx / EINK_PPB] = byte;
}
#endif
#if GDISP_NEED_CONTROL && GDISP_HARDWARE_CONTROL
LLDSPEC void gdisp_lld_control(GDisplay *g) {
switch(g->p.x) {
case GDISP_CONTROL_POWER:
if (g->g.Powermode == (powermode_t)g->p.ptr)
return;
switch((powermode_t)g->p.ptr) {
case powerOff:
case powerSleep:
case powerDeepSleep:
gdisp_lld_flush(g);
power_off(g);
break;
case powerOn:
power_on(g);
break;
default:
return;
}
g->g.Powermode = (powermode_t)g->p.ptr;
return;
case GDISP_CONTROL_ORIENTATION:
if (g->g.Orientation == (orientation_t)g->p.ptr)
return;
switch((orientation_t)g->p.ptr) {
case GDISP_ROTATE_0:
case GDISP_ROTATE_180:
g->g.Height = GDISP_SCREEN_HEIGHT;
g->g.Width = GDISP_SCREEN_WIDTH;
break;
case GDISP_ROTATE_90:
case GDISP_ROTATE_270:
g->g.Height = GDISP_SCREEN_WIDTH;
g->g.Width = GDISP_SCREEN_HEIGHT;
break;
default:
return;
}
g->g.Orientation = (orientation_t)g->p.ptr;
return;
default:
return;
}
}
#endif
/* ===============================
* Accelerated routines
* =============================== */
#if GDISP_HARDWARE_CLEARS
static void subclear(GDisplay *g, color_t color) {
unsigned x, y;
uint8_t byte;
hscan_start(g);
byte = color ? BYTE_WHITE : BYTE_BLACK;
for (x = 0; x < GDISP_SCREEN_WIDTH; x++)
{
hscan_write(g, &byte, 1);
}
hscan_stop(g);
setpin_oe(g, TRUE);
vscan_start(g);
for (y = 0; y < GDISP_SCREEN_HEIGHT; y++)
vscan_bulkwrite(g);
vscan_stop(g);
setpin_oe(g, FALSE);
}
void gdisp_lld_clear(GDisplay *g) {
unsigned i;
clear_block_map(g);
if (EINK_BLINKCLEAR) {
subclear(g, !g->p.color);
gfxSleepMilliseconds(50);
}
for (i = 0; i < EINK_CLEARCOUNT; i++) {
subclear(g, g->p.color);
gfxSleepMilliseconds(10);
}
}
#endif
#endif // GFX_USE_GDISP