ugfx/boards/base/STM32F429i-Discovery/stm32f4xx_fmc.c
inmarket b6d183832e STM32F429i-Discovery board is now a supported board with an example project.
New gdisp driver (currently non-accelerated)
Mouse and other drivers still to come.
The board file is currently ChibiOS specific however the gdisp driver is suitable for any OS.
2014-11-05 19:32:47 +10:00

1377 lines
54 KiB
C

/**
******************************************************************************
* @file stm32f4xx_fmc.c
* @author MCD Application Team
* @version V1.2.1
* @date 19-September-2013
* @brief This file provides firmware functions to manage the following
* functionalities of the FMC peripheral:
* + Interface with SRAM, PSRAM, NOR and OneNAND memories
* + Interface with NAND memories
* + Interface with 16-bit PC Card compatible memories
* + Interface with SDRAM memories
* + Interrupts and flags management
*
******************************************************************************
* @attention
*
* <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
*
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
* You may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.st.com/software_license_agreement_liberty_v2
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f4xx_fmc.h"
#include "ch.h"
//#include "stm32f4xx_rcc.h"
#define assert_param(expr) chDbgAssert(expr,"STPeriph FMC","")
/** @addtogroup STM32F4xx_StdPeriph_Driver
* @{
*/
/** @defgroup FMC
* @brief FMC driver modules
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* --------------------- FMC registers bit mask ---------------------------- */
/* FMC BCRx Mask */
#define BCR_MBKEN_SET ((uint32_t)0x00000001)
#define BCR_MBKEN_RESET ((uint32_t)0x000FFFFE)
#define BCR_FACCEN_SET ((uint32_t)0x00000040)
/* FMC PCRx Mask */
#define PCR_PBKEN_SET ((uint32_t)0x00000004)
#define PCR_PBKEN_RESET ((uint32_t)0x000FFFFB)
#define PCR_ECCEN_SET ((uint32_t)0x00000040)
#define PCR_ECCEN_RESET ((uint32_t)0x000FFFBF)
#define PCR_MEMORYTYPE_NAND ((uint32_t)0x00000008)
/* FMC SDCRx write protection Mask*/
#define SDCR_WriteProtection_RESET ((uint32_t)0x00007DFF)
/* FMC SDCMR Mask*/
#define SDCMR_CTB1_RESET ((uint32_t)0x003FFFEF)
#define SDCMR_CTB2_RESET ((uint32_t)0x003FFFF7)
#define SDCMR_CTB1_2_RESET ((uint32_t)0x003FFFE7)
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup FMC_Private_Functions
* @{
*/
/** @defgroup FMC_Group1 NOR/SRAM Controller functions
* @brief NOR/SRAM Controller functions
*
@verbatim
===============================================================================
##### NOR and SRAM Controller functions #####
===============================================================================
[..] The following sequence should be followed to configure the FMC to interface
with SRAM, PSRAM, NOR or OneNAND memory connected to the NOR/SRAM Bank:
(#) Enable the clock for the FMC and associated GPIOs using the following functions:
RCC_AHB3PeriphClockCmd(RCC_AHB3Periph_FMC, ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOx, ENABLE);
(#) FMC pins configuration
(++) Connect the involved FMC pins to AF12 using the following function
GPIO_PinAFConfig(GPIOx, GPIO_PinSourcex, GPIO_AF_FMC);
(++) Configure these FMC pins in alternate function mode by calling the function
GPIO_Init();
(#) Declare a FMC_NORSRAMInitTypeDef structure, for example:
FMC_NORSRAMInitTypeDef FMC_NORSRAMInitStructure;
and fill the FMC_NORSRAMInitStructure variable with the allowed values of
the structure member.
(#) Initialize the NOR/SRAM Controller by calling the function
FMC_NORSRAMInit(&FMC_NORSRAMInitStructure);
(#) Then enable the NOR/SRAM Bank, for example:
FMC_NORSRAMCmd(FMC_Bank1_NORSRAM2, ENABLE);
(#) At this stage you can read/write from/to the memory connected to the NOR/SRAM Bank.
@endverbatim
* @{
*/
/**
* @brief De-initializes the FMC NOR/SRAM Banks registers to their default
* reset values.
* @param FMC_Bank: specifies the FMC Bank to be used
* This parameter can be one of the following values:
* @arg FMC_Bank1_NORSRAM1: FMC Bank1 NOR/SRAM1
* @arg FMC_Bank1_NORSRAM2: FMC Bank1 NOR/SRAM2
* @arg FMC_Bank1_NORSRAM3: FMC Bank1 NOR/SRAM3
* @arg FMC_Bank1_NORSRAM4: FMC Bank1 NOR/SRAM4
* @retval None
*/
void FMC_NORSRAMDeInit(uint32_t FMC_Bank)
{
/* Check the parameter */
assert_param(IS_FMC_NORSRAM_BANK(FMC_Bank));
/* FMC_Bank1_NORSRAM1 */
if(FMC_Bank == FMC_Bank1_NORSRAM1)
{
FMC_Bank1->BTCR[FMC_Bank] = 0x000030DB;
}
/* FMC_Bank1_NORSRAM2, FMC_Bank1_NORSRAM3 or FMC_Bank1_NORSRAM4 */
else
{
FMC_Bank1->BTCR[FMC_Bank] = 0x000030D2;
}
FMC_Bank1->BTCR[FMC_Bank + 1] = 0x0FFFFFFF;
FMC_Bank1E->BWTR[FMC_Bank] = 0x0FFFFFFF;
}
/**
* @brief Initializes the FMC NOR/SRAM Banks according to the specified
* parameters in the FMC_NORSRAMInitStruct.
* @param FMC_NORSRAMInitStruct : pointer to a FMC_NORSRAMInitTypeDef structure
* that contains the configuration information for the FMC NOR/SRAM
* specified Banks.
* @retval None
*/
void FMC_NORSRAMInit(FMC_NORSRAMInitTypeDef* FMC_NORSRAMInitStruct)
{
uint32_t tmpr = 0;
/* Check the parameters */
assert_param(IS_FMC_NORSRAM_BANK(FMC_NORSRAMInitStruct->FMC_Bank));
assert_param(IS_FMC_MUX(FMC_NORSRAMInitStruct->FMC_DataAddressMux));
assert_param(IS_FMC_MEMORY(FMC_NORSRAMInitStruct->FMC_MemoryType));
assert_param(IS_FMC_NORSRAM_MEMORY_WIDTH(FMC_NORSRAMInitStruct->FMC_MemoryDataWidth));
assert_param(IS_FMC_BURSTMODE(FMC_NORSRAMInitStruct->FMC_BurstAccessMode));
assert_param(IS_FMC_WAIT_POLARITY(FMC_NORSRAMInitStruct->FMC_WaitSignalPolarity));
assert_param(IS_FMC_WRAP_MODE(FMC_NORSRAMInitStruct->FMC_WrapMode));
assert_param(IS_FMC_WAIT_SIGNAL_ACTIVE(FMC_NORSRAMInitStruct->FMC_WaitSignalActive));
assert_param(IS_FMC_WRITE_OPERATION(FMC_NORSRAMInitStruct->FMC_WriteOperation));
assert_param(IS_FMC_WAITE_SIGNAL(FMC_NORSRAMInitStruct->FMC_WaitSignal));
assert_param(IS_FMC_EXTENDED_MODE(FMC_NORSRAMInitStruct->FMC_ExtendedMode));
assert_param(IS_FMC_ASYNWAIT(FMC_NORSRAMInitStruct->FMC_AsynchronousWait));
assert_param(IS_FMC_WRITE_BURST(FMC_NORSRAMInitStruct->FMC_WriteBurst));
assert_param(IS_FMC_CONTINOUS_CLOCK(FMC_NORSRAMInitStruct->FMC_ContinousClock));
assert_param(IS_FMC_ADDRESS_SETUP_TIME(FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_AddressSetupTime));
assert_param(IS_FMC_ADDRESS_HOLD_TIME(FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_AddressHoldTime));
assert_param(IS_FMC_DATASETUP_TIME(FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_DataSetupTime));
assert_param(IS_FMC_TURNAROUND_TIME(FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_BusTurnAroundDuration));
assert_param(IS_FMC_CLK_DIV(FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_CLKDivision));
assert_param(IS_FMC_DATA_LATENCY(FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_DataLatency));
assert_param(IS_FMC_ACCESS_MODE(FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_AccessMode));
/* NOR/SRAM Bank control register configuration */
FMC_Bank1->BTCR[FMC_NORSRAMInitStruct->FMC_Bank] =
(uint32_t)FMC_NORSRAMInitStruct->FMC_DataAddressMux |
FMC_NORSRAMInitStruct->FMC_MemoryType |
FMC_NORSRAMInitStruct->FMC_MemoryDataWidth |
FMC_NORSRAMInitStruct->FMC_BurstAccessMode |
FMC_NORSRAMInitStruct->FMC_WaitSignalPolarity |
FMC_NORSRAMInitStruct->FMC_WrapMode |
FMC_NORSRAMInitStruct->FMC_WaitSignalActive |
FMC_NORSRAMInitStruct->FMC_WriteOperation |
FMC_NORSRAMInitStruct->FMC_WaitSignal |
FMC_NORSRAMInitStruct->FMC_ExtendedMode |
FMC_NORSRAMInitStruct->FMC_AsynchronousWait |
FMC_NORSRAMInitStruct->FMC_WriteBurst |
FMC_NORSRAMInitStruct->FMC_ContinousClock;
if(FMC_NORSRAMInitStruct->FMC_MemoryType == FMC_MemoryType_NOR)
{
FMC_Bank1->BTCR[FMC_NORSRAMInitStruct->FMC_Bank] |= (uint32_t)BCR_FACCEN_SET;
}
/* Configure Continuous clock feature when bank2..4 is used */
if((FMC_NORSRAMInitStruct->FMC_ContinousClock == FMC_CClock_SyncAsync) && (FMC_NORSRAMInitStruct->FMC_Bank != FMC_Bank1_NORSRAM1))
{
tmpr = (uint32_t)((FMC_Bank1->BTCR[FMC_Bank1_NORSRAM1+1]) & ~(((uint32_t)0x0F) << 20));
FMC_Bank1->BTCR[FMC_Bank1_NORSRAM1] |= FMC_NORSRAMInitStruct->FMC_ContinousClock;
FMC_Bank1->BTCR[FMC_Bank1_NORSRAM1] |= FMC_BurstAccessMode_Enable;
FMC_Bank1->BTCR[FMC_Bank1_NORSRAM1+1] = (uint32_t)(tmpr | (((FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_CLKDivision)-1) << 20));
}
/* NOR/SRAM Bank timing register configuration */
FMC_Bank1->BTCR[FMC_NORSRAMInitStruct->FMC_Bank+1] =
(uint32_t)FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_AddressSetupTime |
(FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_AddressHoldTime << 4) |
(FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_DataSetupTime << 8) |
(FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_BusTurnAroundDuration << 16) |
((FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_CLKDivision) << 20) |
((FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_DataLatency) << 24) |
FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_AccessMode;
/* NOR/SRAM Bank timing register for write configuration, if extended mode is used */
if(FMC_NORSRAMInitStruct->FMC_ExtendedMode == FMC_ExtendedMode_Enable)
{
assert_param(IS_FMC_ADDRESS_SETUP_TIME(FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_AddressSetupTime));
assert_param(IS_FMC_ADDRESS_HOLD_TIME(FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_AddressHoldTime));
assert_param(IS_FMC_DATASETUP_TIME(FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_DataSetupTime));
assert_param(IS_FMC_CLK_DIV(FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_CLKDivision));
assert_param(IS_FMC_DATA_LATENCY(FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_DataLatency));
assert_param(IS_FMC_ACCESS_MODE(FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_AccessMode));
FMC_Bank1E->BWTR[FMC_NORSRAMInitStruct->FMC_Bank] =
(uint32_t)FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_AddressSetupTime |
(FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_AddressHoldTime << 4 )|
(FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_DataSetupTime << 8) |
((FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_CLKDivision) << 20) |
((FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_DataLatency) << 24) |
FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_AccessMode;
}
else
{
FMC_Bank1E->BWTR[FMC_NORSRAMInitStruct->FMC_Bank] = 0x0FFFFFFF;
}
}
/**
* @brief Fills each FMC_NORSRAMInitStruct member with its default value.
* @param FMC_NORSRAMInitStruct: pointer to a FMC_NORSRAMInitTypeDef structure
* which will be initialized.
* @retval None
*/
void FMC_NORSRAMStructInit(FMC_NORSRAMInitTypeDef* FMC_NORSRAMInitStruct)
{
/* Reset NOR/SRAM Init structure parameters values */
FMC_NORSRAMInitStruct->FMC_Bank = FMC_Bank1_NORSRAM1;
FMC_NORSRAMInitStruct->FMC_DataAddressMux = FMC_DataAddressMux_Enable;
FMC_NORSRAMInitStruct->FMC_MemoryType = FMC_MemoryType_SRAM;
FMC_NORSRAMInitStruct->FMC_MemoryDataWidth = FMC_NORSRAM_MemoryDataWidth_16b;
FMC_NORSRAMInitStruct->FMC_BurstAccessMode = FMC_BurstAccessMode_Disable;
FMC_NORSRAMInitStruct->FMC_AsynchronousWait = FMC_AsynchronousWait_Disable;
FMC_NORSRAMInitStruct->FMC_WaitSignalPolarity = FMC_WaitSignalPolarity_Low;
FMC_NORSRAMInitStruct->FMC_WrapMode = FMC_WrapMode_Disable;
FMC_NORSRAMInitStruct->FMC_WaitSignalActive = FMC_WaitSignalActive_BeforeWaitState;
FMC_NORSRAMInitStruct->FMC_WriteOperation = FMC_WriteOperation_Enable;
FMC_NORSRAMInitStruct->FMC_WaitSignal = FMC_WaitSignal_Enable;
FMC_NORSRAMInitStruct->FMC_ExtendedMode = FMC_ExtendedMode_Disable;
FMC_NORSRAMInitStruct->FMC_WriteBurst = FMC_WriteBurst_Disable;
FMC_NORSRAMInitStruct->FMC_ContinousClock = FMC_CClock_SyncOnly;
FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_AddressSetupTime = 15;
FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_AddressHoldTime = 15;
FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_DataSetupTime = 255;
FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_BusTurnAroundDuration = 15;
FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_CLKDivision = 15;
FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_DataLatency = 15;
FMC_NORSRAMInitStruct->FMC_ReadWriteTimingStruct->FMC_AccessMode = FMC_AccessMode_A;
FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_AddressSetupTime = 15;
FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_AddressHoldTime = 15;
FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_DataSetupTime = 255;
FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_BusTurnAroundDuration = 15;
FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_CLKDivision = 15;
FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_DataLatency = 15;
FMC_NORSRAMInitStruct->FMC_WriteTimingStruct->FMC_AccessMode = FMC_AccessMode_A;
}
/**
* @brief Enables or disables the specified NOR/SRAM Memory Bank.
* @param FMC_Bank: specifies the FMC Bank to be used
* This parameter can be one of the following values:
* @arg FMC_Bank1_NORSRAM1: FMC Bank1 NOR/SRAM1
* @arg FMC_Bank1_NORSRAM2: FMC Bank1 NOR/SRAM2
* @arg FMC_Bank1_NORSRAM3: FMC Bank1 NOR/SRAM3
* @arg FMC_Bank1_NORSRAM4: FMC Bank1 NOR/SRAM4
* @param NewState: new state of the FMC_Bank. This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void FMC_NORSRAMCmd(uint32_t FMC_Bank, FunctionalState NewState)
{
assert_param(IS_FMC_NORSRAM_BANK(FMC_Bank));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected NOR/SRAM Bank by setting the PBKEN bit in the BCRx register */
FMC_Bank1->BTCR[FMC_Bank] |= BCR_MBKEN_SET;
}
else
{
/* Disable the selected NOR/SRAM Bank by clearing the PBKEN bit in the BCRx register */
FMC_Bank1->BTCR[FMC_Bank] &= BCR_MBKEN_RESET;
}
}
/**
* @}
*/
/** @defgroup FMC_Group2 NAND Controller functions
* @brief NAND Controller functions
*
@verbatim
===============================================================================
##### NAND Controller functions #####
===============================================================================
[..] The following sequence should be followed to configure the FMC to interface
with 8-bit or 16-bit NAND memory connected to the NAND Bank:
(#) Enable the clock for the FMC and associated GPIOs using the following functions:
(++) RCC_AHB3PeriphClockCmd(RCC_AHB3Periph_FMC, ENABLE);
(++) RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOx, ENABLE);
(#) FMC pins configuration
(++) Connect the involved FMC pins to AF12 using the following function
GPIO_PinAFConfig(GPIOx, GPIO_PinSourcex, GPIO_AF_FMC);
(++) Configure these FMC pins in alternate function mode by calling the function
GPIO_Init();
(#) Declare a FMC_NANDInitTypeDef structure, for example:
FMC_NANDInitTypeDef FMC_NANDInitStructure;
and fill the FMC_NANDInitStructure variable with the allowed values of
the structure member.
(#) Initialize the NAND Controller by calling the function
FMC_NANDInit(&FMC_NANDInitStructure);
(#) Then enable the NAND Bank, for example:
FMC_NANDCmd(FMC_Bank3_NAND, ENABLE);
(#) At this stage you can read/write from/to the memory connected to the NAND Bank.
[..]
(@) To enable the Error Correction Code (ECC), you have to use the function
FMC_NANDECCCmd(FMC_Bank3_NAND, ENABLE);
[..]
(@) and to get the current ECC value you have to use the function
ECCval = FMC_GetECC(FMC_Bank3_NAND);
@endverbatim
* @{
*/
/**
* @brief De-initializes the FMC NAND Banks registers to their default reset values.
* @param FMC_Bank: specifies the FMC Bank to be used
* This parameter can be one of the following values:
* @arg FMC_Bank2_NAND: FMC Bank2 NAND
* @arg FMC_Bank3_NAND: FMC Bank3 NAND
* @retval None
*/
void FMC_NANDDeInit(uint32_t FMC_Bank)
{
/* Check the parameter */
assert_param(IS_FMC_NAND_BANK(FMC_Bank));
if(FMC_Bank == FMC_Bank2_NAND)
{
/* Set the FMC_Bank2 registers to their reset values */
FMC_Bank2->PCR2 = 0x00000018;
FMC_Bank2->SR2 = 0x00000040;
FMC_Bank2->PMEM2 = 0xFCFCFCFC;
FMC_Bank2->PATT2 = 0xFCFCFCFC;
}
/* FMC_Bank3_NAND */
else
{
/* Set the FMC_Bank3 registers to their reset values */
FMC_Bank3->PCR3 = 0x00000018;
FMC_Bank3->SR3 = 0x00000040;
FMC_Bank3->PMEM3 = 0xFCFCFCFC;
FMC_Bank3->PATT3 = 0xFCFCFCFC;
}
}
/**
* @brief Initializes the FMC NAND Banks according to the specified parameters
* in the FMC_NANDInitStruct.
* @param FMC_NANDInitStruct : pointer to a FMC_NANDInitTypeDef structure that
* contains the configuration information for the FMC NAND specified Banks.
* @retval None
*/
void FMC_NANDInit(FMC_NANDInitTypeDef* FMC_NANDInitStruct)
{
uint32_t tmppcr = 0x00000000, tmppmem = 0x00000000, tmppatt = 0x00000000;
/* Check the parameters */
assert_param(IS_FMC_NAND_BANK(FMC_NANDInitStruct->FMC_Bank));
assert_param(IS_FMC_WAIT_FEATURE(FMC_NANDInitStruct->FMC_Waitfeature));
assert_param(IS_FMC_NAND_MEMORY_WIDTH(FMC_NANDInitStruct->FMC_MemoryDataWidth));
assert_param(IS_FMC_ECC_STATE(FMC_NANDInitStruct->FMC_ECC));
assert_param(IS_FMC_ECCPAGE_SIZE(FMC_NANDInitStruct->FMC_ECCPageSize));
assert_param(IS_FMC_TCLR_TIME(FMC_NANDInitStruct->FMC_TCLRSetupTime));
assert_param(IS_FMC_TAR_TIME(FMC_NANDInitStruct->FMC_TARSetupTime));
assert_param(IS_FMC_SETUP_TIME(FMC_NANDInitStruct->FMC_CommonSpaceTimingStruct->FMC_SetupTime));
assert_param(IS_FMC_WAIT_TIME(FMC_NANDInitStruct->FMC_CommonSpaceTimingStruct->FMC_WaitSetupTime));
assert_param(IS_FMC_HOLD_TIME(FMC_NANDInitStruct->FMC_CommonSpaceTimingStruct->FMC_HoldSetupTime));
assert_param(IS_FMC_HIZ_TIME(FMC_NANDInitStruct->FMC_CommonSpaceTimingStruct->FMC_HiZSetupTime));
assert_param(IS_FMC_SETUP_TIME(FMC_NANDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_SetupTime));
assert_param(IS_FMC_WAIT_TIME(FMC_NANDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_WaitSetupTime));
assert_param(IS_FMC_HOLD_TIME(FMC_NANDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_HoldSetupTime));
assert_param(IS_FMC_HIZ_TIME(FMC_NANDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_HiZSetupTime));
/* Set the tmppcr value according to FMC_NANDInitStruct parameters */
tmppcr = (uint32_t)FMC_NANDInitStruct->FMC_Waitfeature |
PCR_MEMORYTYPE_NAND |
FMC_NANDInitStruct->FMC_MemoryDataWidth |
FMC_NANDInitStruct->FMC_ECC |
FMC_NANDInitStruct->FMC_ECCPageSize |
(FMC_NANDInitStruct->FMC_TCLRSetupTime << 9 )|
(FMC_NANDInitStruct->FMC_TARSetupTime << 13);
/* Set tmppmem value according to FMC_CommonSpaceTimingStructure parameters */
tmppmem = (uint32_t)FMC_NANDInitStruct->FMC_CommonSpaceTimingStruct->FMC_SetupTime |
(FMC_NANDInitStruct->FMC_CommonSpaceTimingStruct->FMC_WaitSetupTime << 8) |
(FMC_NANDInitStruct->FMC_CommonSpaceTimingStruct->FMC_HoldSetupTime << 16)|
(FMC_NANDInitStruct->FMC_CommonSpaceTimingStruct->FMC_HiZSetupTime << 24);
/* Set tmppatt value according to FMC_AttributeSpaceTimingStructure parameters */
tmppatt = (uint32_t)FMC_NANDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_SetupTime |
(FMC_NANDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_WaitSetupTime << 8) |
(FMC_NANDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_HoldSetupTime << 16)|
(FMC_NANDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_HiZSetupTime << 24);
if(FMC_NANDInitStruct->FMC_Bank == FMC_Bank2_NAND)
{
/* FMC_Bank2_NAND registers configuration */
FMC_Bank2->PCR2 = tmppcr;
FMC_Bank2->PMEM2 = tmppmem;
FMC_Bank2->PATT2 = tmppatt;
}
else
{
/* FMC_Bank3_NAND registers configuration */
FMC_Bank3->PCR3 = tmppcr;
FMC_Bank3->PMEM3 = tmppmem;
FMC_Bank3->PATT3 = tmppatt;
}
}
/**
* @brief Fills each FMC_NANDInitStruct member with its default value.
* @param FMC_NANDInitStruct: pointer to a FMC_NANDInitTypeDef structure which
* will be initialized.
* @retval None
*/
void FMC_NANDStructInit(FMC_NANDInitTypeDef* FMC_NANDInitStruct)
{
/* Reset NAND Init structure parameters values */
FMC_NANDInitStruct->FMC_Bank = FMC_Bank2_NAND;
FMC_NANDInitStruct->FMC_Waitfeature = FMC_Waitfeature_Disable;
FMC_NANDInitStruct->FMC_MemoryDataWidth = FMC_NAND_MemoryDataWidth_16b;
FMC_NANDInitStruct->FMC_ECC = FMC_ECC_Disable;
FMC_NANDInitStruct->FMC_ECCPageSize = FMC_ECCPageSize_256Bytes;
FMC_NANDInitStruct->FMC_TCLRSetupTime = 0x0;
FMC_NANDInitStruct->FMC_TARSetupTime = 0x0;
FMC_NANDInitStruct->FMC_CommonSpaceTimingStruct->FMC_SetupTime = 252;
FMC_NANDInitStruct->FMC_CommonSpaceTimingStruct->FMC_WaitSetupTime = 252;
FMC_NANDInitStruct->FMC_CommonSpaceTimingStruct->FMC_HoldSetupTime = 252;
FMC_NANDInitStruct->FMC_CommonSpaceTimingStruct->FMC_HiZSetupTime = 252;
FMC_NANDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_SetupTime = 252;
FMC_NANDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_WaitSetupTime = 252;
FMC_NANDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_HoldSetupTime = 252;
FMC_NANDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_HiZSetupTime = 252;
}
/**
* @brief Enables or disables the specified NAND Memory Bank.
* @param FMC_Bank: specifies the FMC Bank to be used
* This parameter can be one of the following values:
* @arg FMC_Bank2_NAND: FMC Bank2 NAND
* @arg FMC_Bank3_NAND: FMC Bank3 NAND
* @param NewState: new state of the FMC_Bank. This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void FMC_NANDCmd(uint32_t FMC_Bank, FunctionalState NewState)
{
assert_param(IS_FMC_NAND_BANK(FMC_Bank));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected NAND Bank by setting the PBKEN bit in the PCRx register */
if(FMC_Bank == FMC_Bank2_NAND)
{
FMC_Bank2->PCR2 |= PCR_PBKEN_SET;
}
else
{
FMC_Bank3->PCR3 |= PCR_PBKEN_SET;
}
}
else
{
/* Disable the selected NAND Bank by clearing the PBKEN bit in the PCRx register */
if(FMC_Bank == FMC_Bank2_NAND)
{
FMC_Bank2->PCR2 &= PCR_PBKEN_RESET;
}
else
{
FMC_Bank3->PCR3 &= PCR_PBKEN_RESET;
}
}
}
/**
* @brief Enables or disables the FMC NAND ECC feature.
* @param FMC_Bank: specifies the FMC Bank to be used
* This parameter can be one of the following values:
* @arg FMC_Bank2_NAND: FMC Bank2 NAND
* @arg FMC_Bank3_NAND: FMC Bank3 NAND
* @param NewState: new state of the FMC NAND ECC feature.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void FMC_NANDECCCmd(uint32_t FMC_Bank, FunctionalState NewState)
{
assert_param(IS_FMC_NAND_BANK(FMC_Bank));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected NAND Bank ECC function by setting the ECCEN bit in the PCRx register */
if(FMC_Bank == FMC_Bank2_NAND)
{
FMC_Bank2->PCR2 |= PCR_ECCEN_SET;
}
else
{
FMC_Bank3->PCR3 |= PCR_ECCEN_SET;
}
}
else
{
/* Disable the selected NAND Bank ECC function by clearing the ECCEN bit in the PCRx register */
if(FMC_Bank == FMC_Bank2_NAND)
{
FMC_Bank2->PCR2 &= PCR_ECCEN_RESET;
}
else
{
FMC_Bank3->PCR3 &= PCR_ECCEN_RESET;
}
}
}
/**
* @brief Returns the error correction code register value.
* @param FMC_Bank: specifies the FMC Bank to be used
* This parameter can be one of the following values:
* @arg FMC_Bank2_NAND: FMC Bank2 NAND
* @arg FMC_Bank3_NAND: FMC Bank3 NAND
* @retval The Error Correction Code (ECC) value.
*/
uint32_t FMC_GetECC(uint32_t FMC_Bank)
{
uint32_t eccval = 0x00000000;
if(FMC_Bank == FMC_Bank2_NAND)
{
/* Get the ECCR2 register value */
eccval = FMC_Bank2->ECCR2;
}
else
{
/* Get the ECCR3 register value */
eccval = FMC_Bank3->ECCR3;
}
/* Return the error correction code value */
return(eccval);
}
/**
* @}
*/
/** @defgroup FMC_Group3 PCCARD Controller functions
* @brief PCCARD Controller functions
*
@verbatim
===============================================================================
##### PCCARD Controller functions #####
===============================================================================
[..] he following sequence should be followed to configure the FMC to interface
with 16-bit PC Card compatible memory connected to the PCCARD Bank:
(#) Enable the clock for the FMC and associated GPIOs using the following functions:
(++) RCC_AHB3PeriphClockCmd(RCC_AHB3Periph_FMC, ENABLE);
(++) RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOx, ENABLE);
(#) FMC pins configuration
(++) Connect the involved FMC pins to AF12 using the following function
GPIO_PinAFConfig(GPIOx, GPIO_PinSourcex, GPIO_AF_FMC);
(++) Configure these FMC pins in alternate function mode by calling the function
GPIO_Init();
(#) Declare a FMC_PCCARDInitTypeDef structure, for example:
FMC_PCCARDInitTypeDef FMC_PCCARDInitStructure;
and fill the FMC_PCCARDInitStructure variable with the allowed values of
the structure member.
(#) Initialize the PCCARD Controller by calling the function
FMC_PCCARDInit(&FMC_PCCARDInitStructure);
(#) Then enable the PCCARD Bank:
FMC_PCCARDCmd(ENABLE);
(#) At this stage you can read/write from/to the memory connected to the PCCARD Bank.
@endverbatim
* @{
*/
/**
* @brief De-initializes the FMC PCCARD Bank registers to their default reset values.
* @param None
* @retval None
*/
void FMC_PCCARDDeInit(void)
{
/* Set the FMC_Bank4 registers to their reset values */
FMC_Bank4->PCR4 = 0x00000018;
FMC_Bank4->SR4 = 0x00000000;
FMC_Bank4->PMEM4 = 0xFCFCFCFC;
FMC_Bank4->PATT4 = 0xFCFCFCFC;
FMC_Bank4->PIO4 = 0xFCFCFCFC;
}
/**
* @brief Initializes the FMC PCCARD Bank according to the specified parameters
* in the FMC_PCCARDInitStruct.
* @param FMC_PCCARDInitStruct : pointer to a FMC_PCCARDInitTypeDef structure
* that contains the configuration information for the FMC PCCARD Bank.
* @retval None
*/
void FMC_PCCARDInit(FMC_PCCARDInitTypeDef* FMC_PCCARDInitStruct)
{
/* Check the parameters */
assert_param(IS_FMC_WAIT_FEATURE(FMC_PCCARDInitStruct->FMC_Waitfeature));
assert_param(IS_FMC_TCLR_TIME(FMC_PCCARDInitStruct->FMC_TCLRSetupTime));
assert_param(IS_FMC_TAR_TIME(FMC_PCCARDInitStruct->FMC_TARSetupTime));
assert_param(IS_FMC_SETUP_TIME(FMC_PCCARDInitStruct->FMC_CommonSpaceTimingStruct->FMC_SetupTime));
assert_param(IS_FMC_WAIT_TIME(FMC_PCCARDInitStruct->FMC_CommonSpaceTimingStruct->FMC_WaitSetupTime));
assert_param(IS_FMC_HOLD_TIME(FMC_PCCARDInitStruct->FMC_CommonSpaceTimingStruct->FMC_HoldSetupTime));
assert_param(IS_FMC_HIZ_TIME(FMC_PCCARDInitStruct->FMC_CommonSpaceTimingStruct->FMC_HiZSetupTime));
assert_param(IS_FMC_SETUP_TIME(FMC_PCCARDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_SetupTime));
assert_param(IS_FMC_WAIT_TIME(FMC_PCCARDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_WaitSetupTime));
assert_param(IS_FMC_HOLD_TIME(FMC_PCCARDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_HoldSetupTime));
assert_param(IS_FMC_HIZ_TIME(FMC_PCCARDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_HiZSetupTime));
assert_param(IS_FMC_SETUP_TIME(FMC_PCCARDInitStruct->FMC_IOSpaceTimingStruct->FMC_SetupTime));
assert_param(IS_FMC_WAIT_TIME(FMC_PCCARDInitStruct->FMC_IOSpaceTimingStruct->FMC_WaitSetupTime));
assert_param(IS_FMC_HOLD_TIME(FMC_PCCARDInitStruct->FMC_IOSpaceTimingStruct->FMC_HoldSetupTime));
assert_param(IS_FMC_HIZ_TIME(FMC_PCCARDInitStruct->FMC_IOSpaceTimingStruct->FMC_HiZSetupTime));
/* Set the PCR4 register value according to FMC_PCCARDInitStruct parameters */
FMC_Bank4->PCR4 = (uint32_t)FMC_PCCARDInitStruct->FMC_Waitfeature |
FMC_NAND_MemoryDataWidth_16b |
(FMC_PCCARDInitStruct->FMC_TCLRSetupTime << 9) |
(FMC_PCCARDInitStruct->FMC_TARSetupTime << 13);
/* Set PMEM4 register value according to FMC_CommonSpaceTimingStructure parameters */
FMC_Bank4->PMEM4 = (uint32_t)FMC_PCCARDInitStruct->FMC_CommonSpaceTimingStruct->FMC_SetupTime |
(FMC_PCCARDInitStruct->FMC_CommonSpaceTimingStruct->FMC_WaitSetupTime << 8) |
(FMC_PCCARDInitStruct->FMC_CommonSpaceTimingStruct->FMC_HoldSetupTime << 16)|
(FMC_PCCARDInitStruct->FMC_CommonSpaceTimingStruct->FMC_HiZSetupTime << 24);
/* Set PATT4 register value according to FMC_AttributeSpaceTimingStructure parameters */
FMC_Bank4->PATT4 = (uint32_t)FMC_PCCARDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_SetupTime |
(FMC_PCCARDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_WaitSetupTime << 8) |
(FMC_PCCARDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_HoldSetupTime << 16)|
(FMC_PCCARDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_HiZSetupTime << 24);
/* Set PIO4 register value according to FMC_IOSpaceTimingStructure parameters */
FMC_Bank4->PIO4 = (uint32_t)FMC_PCCARDInitStruct->FMC_IOSpaceTimingStruct->FMC_SetupTime |
(FMC_PCCARDInitStruct->FMC_IOSpaceTimingStruct->FMC_WaitSetupTime << 8) |
(FMC_PCCARDInitStruct->FMC_IOSpaceTimingStruct->FMC_HoldSetupTime << 16)|
(FMC_PCCARDInitStruct->FMC_IOSpaceTimingStruct->FMC_HiZSetupTime << 24);
}
/**
* @brief Fills each FMC_PCCARDInitStruct member with its default value.
* @param FMC_PCCARDInitStruct: pointer to a FMC_PCCARDInitTypeDef structure
* which will be initialized.
* @retval None
*/
void FMC_PCCARDStructInit(FMC_PCCARDInitTypeDef* FMC_PCCARDInitStruct)
{
/* Reset PCCARD Init structure parameters values */
FMC_PCCARDInitStruct->FMC_Waitfeature = FMC_Waitfeature_Disable;
FMC_PCCARDInitStruct->FMC_TCLRSetupTime = 0;
FMC_PCCARDInitStruct->FMC_TARSetupTime = 0;
FMC_PCCARDInitStruct->FMC_CommonSpaceTimingStruct->FMC_SetupTime = 252;
FMC_PCCARDInitStruct->FMC_CommonSpaceTimingStruct->FMC_WaitSetupTime = 252;
FMC_PCCARDInitStruct->FMC_CommonSpaceTimingStruct->FMC_HoldSetupTime = 252;
FMC_PCCARDInitStruct->FMC_CommonSpaceTimingStruct->FMC_HiZSetupTime = 252;
FMC_PCCARDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_SetupTime = 252;
FMC_PCCARDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_WaitSetupTime = 252;
FMC_PCCARDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_HoldSetupTime = 252;
FMC_PCCARDInitStruct->FMC_AttributeSpaceTimingStruct->FMC_HiZSetupTime = 252;
FMC_PCCARDInitStruct->FMC_IOSpaceTimingStruct->FMC_SetupTime = 252;
FMC_PCCARDInitStruct->FMC_IOSpaceTimingStruct->FMC_WaitSetupTime = 252;
FMC_PCCARDInitStruct->FMC_IOSpaceTimingStruct->FMC_HoldSetupTime = 252;
FMC_PCCARDInitStruct->FMC_IOSpaceTimingStruct->FMC_HiZSetupTime = 252;
}
/**
* @brief Enables or disables the PCCARD Memory Bank.
* @param NewState: new state of the PCCARD Memory Bank.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void FMC_PCCARDCmd(FunctionalState NewState)
{
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the PCCARD Bank by setting the PBKEN bit in the PCR4 register */
FMC_Bank4->PCR4 |= PCR_PBKEN_SET;
}
else
{
/* Disable the PCCARD Bank by clearing the PBKEN bit in the PCR4 register */
FMC_Bank4->PCR4 &= PCR_PBKEN_RESET;
}
}
/**
* @}
*/
/** @defgroup FMC_Group4 SDRAM Controller functions
* @brief SDRAM Controller functions
*
@verbatim
===============================================================================
##### SDRAM Controller functions #####
===============================================================================
[..] The following sequence should be followed to configure the FMC to interface
with SDRAM memory connected to the SDRAM Bank 1 or SDRAM bank 2:
(#) Enable the clock for the FMC and associated GPIOs using the following functions:
(++) RCC_AHB3PeriphClockCmd(RCC_AHB3Periph_FMC, ENABLE);
(++) RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOx, ENABLE);
(#) FMC pins configuration
(++) Connect the involved FMC pins to AF12 using the following function
GPIO_PinAFConfig(GPIOx, GPIO_PinSourcex, GPIO_AF_FMC);
(++) Configure these FMC pins in alternate function mode by calling the function
GPIO_Init();
(#) Declare a FMC_SDRAMInitTypeDef structure, for example:
FMC_SDRAMInitTypeDef FMC_SDRAMInitStructure;
and fill the FMC_SDRAMInitStructure variable with the allowed values of
the structure member.
(#) Initialize the SDRAM Controller by calling the function
FMC_SDRAMInit(&FMC_SDRAMInitStructure);
(#) Declare a FMC_SDRAMCommandTypeDef structure, for example:
FMC_SDRAMCommandTypeDef FMC_SDRAMCommandStructure;
and fill the FMC_SDRAMCommandStructure variable with the allowed values of
the structure member.
(#) Configure the SDCMR register with the desired command parameters by calling
the function FMC_SDRAMCmdConfig(&FMC_SDRAMCommandStructure);
(#) At this stage, the SDRAM memory is ready for any valid command.
@endverbatim
* @{
*/
/**
* @brief De-initializes the FMC SDRAM Banks registers to their default
* reset values.
* @param FMC_Bank: specifies the FMC Bank to be used
* This parameter can be one of the following values:
* @arg FMC_Bank1_SDRAM: FMC Bank1 SDRAM
* @arg FMC_Bank2_SDRAM: FMC Bank2 SDRAM
* @retval None
*/
void FMC_SDRAMDeInit(uint32_t FMC_Bank)
{
/* Check the parameter */
assert_param(IS_FMC_SDRAM_BANK(FMC_Bank));
FMC_Bank5_6->SDCR[FMC_Bank] = 0x000002D0;
FMC_Bank5_6->SDTR[FMC_Bank] = 0x0FFFFFFF;
FMC_Bank5_6->SDCMR = 0x00000000;
FMC_Bank5_6->SDRTR = 0x00000000;
FMC_Bank5_6->SDSR = 0x00000000;
}
/**
* @brief Initializes the FMC SDRAM Banks according to the specified
* parameters in the FMC_SDRAMInitStruct.
* @param FMC_SDRAMInitStruct : pointer to a FMC_SDRAMInitTypeDef structure
* that contains the configuration information for the FMC SDRAM
* specified Banks.
* @retval None
*/
void FMC_SDRAMInit(FMC_SDRAMInitTypeDef* FMC_SDRAMInitStruct)
{
/* temporary registers */
uint32_t tmpr1 = 0;
uint32_t tmpr2 = 0;
uint32_t tmpr3 = 0;
uint32_t tmpr4 = 0;
/* Check the parameters */
/* Control parameters */
assert_param(IS_FMC_SDRAM_BANK(FMC_SDRAMInitStruct->FMC_Bank));
assert_param(IS_FMC_COLUMNBITS_NUMBER(FMC_SDRAMInitStruct->FMC_ColumnBitsNumber));
assert_param(IS_FMC_ROWBITS_NUMBER(FMC_SDRAMInitStruct->FMC_RowBitsNumber));
assert_param(IS_FMC_SDMEMORY_WIDTH(FMC_SDRAMInitStruct->FMC_SDMemoryDataWidth));
assert_param(IS_FMC_INTERNALBANK_NUMBER(FMC_SDRAMInitStruct->FMC_InternalBankNumber));
assert_param(IS_FMC_CAS_LATENCY(FMC_SDRAMInitStruct->FMC_CASLatency));
assert_param(IS_FMC_WRITE_PROTECTION(FMC_SDRAMInitStruct->FMC_WriteProtection));
assert_param(IS_FMC_SDCLOCK_PERIOD(FMC_SDRAMInitStruct->FMC_SDClockPeriod));
assert_param(IS_FMC_READ_BURST(FMC_SDRAMInitStruct->FMC_ReadBurst));
assert_param(IS_FMC_READPIPE_DELAY(FMC_SDRAMInitStruct->FMC_ReadPipeDelay));
/* Timing parameters */
assert_param(IS_FMC_LOADTOACTIVE_DELAY(FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_LoadToActiveDelay));
assert_param(IS_FMC_EXITSELFREFRESH_DELAY(FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_ExitSelfRefreshDelay));
assert_param(IS_FMC_SELFREFRESH_TIME(FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_SelfRefreshTime));
assert_param(IS_FMC_ROWCYCLE_DELAY(FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_RowCycleDelay));
assert_param(IS_FMC_WRITE_RECOVERY_TIME(FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_WriteRecoveryTime));
assert_param(IS_FMC_RP_DELAY(FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_RPDelay));
assert_param(IS_FMC_RCD_DELAY(FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_RCDDelay));
/* SDRAM bank control register configuration */
tmpr1 = (uint32_t)FMC_SDRAMInitStruct->FMC_ColumnBitsNumber |
FMC_SDRAMInitStruct->FMC_RowBitsNumber |
FMC_SDRAMInitStruct->FMC_SDMemoryDataWidth |
FMC_SDRAMInitStruct->FMC_InternalBankNumber |
FMC_SDRAMInitStruct->FMC_CASLatency |
FMC_SDRAMInitStruct->FMC_WriteProtection |
FMC_SDRAMInitStruct->FMC_SDClockPeriod |
FMC_SDRAMInitStruct->FMC_ReadBurst |
FMC_SDRAMInitStruct->FMC_ReadPipeDelay;
if(FMC_SDRAMInitStruct->FMC_Bank == FMC_Bank1_SDRAM )
{
FMC_Bank5_6->SDCR[FMC_SDRAMInitStruct->FMC_Bank] = tmpr1;
}
else /* SDCR2 "don't care" bits configuration */
{
tmpr3 = (uint32_t)FMC_SDRAMInitStruct->FMC_SDClockPeriod |
FMC_SDRAMInitStruct->FMC_ReadBurst |
FMC_SDRAMInitStruct->FMC_ReadPipeDelay;
FMC_Bank5_6->SDCR[FMC_Bank1_SDRAM] = tmpr3;
FMC_Bank5_6->SDCR[FMC_SDRAMInitStruct->FMC_Bank] = tmpr1;
}
/* SDRAM bank timing register configuration */
if(FMC_SDRAMInitStruct->FMC_Bank == FMC_Bank1_SDRAM )
{
tmpr2 = (uint32_t)((FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_LoadToActiveDelay)-1) |
(((FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_ExitSelfRefreshDelay)-1) << 4) |
(((FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_SelfRefreshTime)-1) << 8) |
(((FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_RowCycleDelay)-1) << 12) |
(((FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_WriteRecoveryTime)-1) << 16) |
(((FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_RPDelay)-1) << 20) |
(((FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_RCDDelay)-1) << 24);
FMC_Bank5_6->SDTR[FMC_SDRAMInitStruct->FMC_Bank] = tmpr2;
}
else /* SDTR "don't care bits configuration */
{
tmpr2 = (uint32_t)((FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_LoadToActiveDelay)-1) |
(((FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_ExitSelfRefreshDelay)-1) << 4) |
(((FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_SelfRefreshTime)-1) << 8) |
(((FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_WriteRecoveryTime)-1) << 16);
tmpr4 = (uint32_t)(((FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_RowCycleDelay)-1) << 12) |
(((FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_RPDelay)-1) << 20);
FMC_Bank5_6->SDTR[FMC_Bank1_SDRAM] = tmpr4;
FMC_Bank5_6->SDTR[FMC_SDRAMInitStruct->FMC_Bank] = tmpr2;
}
}
/**
* @brief Fills each FMC_SDRAMInitStruct member with its default value.
* @param FMC_SDRAMInitStruct: pointer to a FMC_SDRAMInitTypeDef structure
* which will be initialized.
* @retval None
*/
void FMC_SDRAMStructInit(FMC_SDRAMInitTypeDef* FMC_SDRAMInitStruct)
{
/* Reset SDRAM Init structure parameters values */
FMC_SDRAMInitStruct->FMC_Bank = FMC_Bank1_SDRAM;
FMC_SDRAMInitStruct->FMC_ColumnBitsNumber = FMC_ColumnBits_Number_8b;
FMC_SDRAMInitStruct->FMC_RowBitsNumber = FMC_RowBits_Number_11b;
FMC_SDRAMInitStruct->FMC_SDMemoryDataWidth = FMC_SDMemory_Width_16b;
FMC_SDRAMInitStruct->FMC_InternalBankNumber = FMC_InternalBank_Number_4;
FMC_SDRAMInitStruct->FMC_CASLatency = FMC_CAS_Latency_1;
FMC_SDRAMInitStruct->FMC_WriteProtection = FMC_Write_Protection_Enable;
FMC_SDRAMInitStruct->FMC_SDClockPeriod = FMC_SDClock_Disable;
FMC_SDRAMInitStruct->FMC_ReadBurst = FMC_Read_Burst_Disable;
FMC_SDRAMInitStruct->FMC_ReadPipeDelay = FMC_ReadPipe_Delay_0;
FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_LoadToActiveDelay = 16;
FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_ExitSelfRefreshDelay = 16;
FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_SelfRefreshTime = 16;
FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_RowCycleDelay = 16;
FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_WriteRecoveryTime = 16;
FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_RPDelay = 16;
FMC_SDRAMInitStruct->FMC_SDRAMTimingStruct->FMC_RCDDelay = 16;
}
/**
* @brief Configures the SDRAM memory command issued when the device is accessed.
* @param FMC_SDRAMCommandStruct: pointer to a FMC_SDRAMCommandTypeDef structure
* which will be configured.
* @retval None
*/
void FMC_SDRAMCmdConfig(FMC_SDRAMCommandTypeDef* FMC_SDRAMCommandStruct)
{
uint32_t tmpr = 0x0;
/* check parameters */
assert_param(IS_FMC_COMMAND_MODE(FMC_SDRAMCommandStruct->FMC_CommandMode));
assert_param(IS_FMC_COMMAND_TARGET(FMC_SDRAMCommandStruct->FMC_CommandTarget));
assert_param(IS_FMC_AUTOREFRESH_NUMBER(FMC_SDRAMCommandStruct->FMC_AutoRefreshNumber));
assert_param(IS_FMC_MODE_REGISTER(FMC_SDRAMCommandStruct->FMC_ModeRegisterDefinition));
tmpr = (uint32_t)(FMC_SDRAMCommandStruct->FMC_CommandMode |
FMC_SDRAMCommandStruct->FMC_CommandTarget |
(((FMC_SDRAMCommandStruct->FMC_AutoRefreshNumber)-1)<<5) |
((FMC_SDRAMCommandStruct->FMC_ModeRegisterDefinition)<<9));
FMC_Bank5_6->SDCMR = tmpr;
}
/**
* @brief Returns the indicated FMC SDRAM bank mode status.
* @param SDRAM_Bank: Defines the FMC SDRAM bank. This parameter can be
* FMC_Bank1_SDRAM or FMC_Bank2_SDRAM.
* @retval The FMC SDRAM bank mode status
*/
uint32_t FMC_GetModeStatus(uint32_t SDRAM_Bank)
{
uint32_t tmpreg = 0;
/* Check the parameter */
assert_param(IS_FMC_SDRAM_BANK(SDRAM_Bank));
/* Get the busy flag status */
if(SDRAM_Bank == FMC_Bank1_SDRAM)
{
tmpreg = (uint32_t)(FMC_Bank5_6->SDSR & FMC_SDSR_MODES1);
}
else
{
tmpreg = ((uint32_t)(FMC_Bank5_6->SDSR & FMC_SDSR_MODES2) >> 2);
}
/* Return the mode status */
return tmpreg;
}
/**
* @brief defines the SDRAM Memory Refresh rate.
* @param FMC_Count: specifies the Refresh timer count.
* @retval None
*/
void FMC_SetRefreshCount(uint32_t FMC_Count)
{
/* check the parameters */
assert_param(IS_FMC_REFRESH_COUNT(FMC_Count));
FMC_Bank5_6->SDRTR |= (FMC_Count<<1);
}
/**
* @brief Sets the Number of consecutive SDRAM Memory auto Refresh commands.
* @param FMC_Number: specifies the auto Refresh number.
* @retval None
*/
void FMC_SetAutoRefresh_Number(uint32_t FMC_Number)
{
/* check the parameters */
assert_param(IS_FMC_AUTOREFRESH_NUMBER(FMC_Number));
FMC_Bank5_6->SDCMR |= (FMC_Number << 5);
}
/**
* @brief Enables or disables write protection to the specified FMC SDRAM Bank.
* @param SDRAM_Bank: Defines the FMC SDRAM bank. This parameter can be
* FMC_Bank1_SDRAM or FMC_Bank2_SDRAM.
* @param NewState: new state of the write protection flag.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void FMC_SDRAMWriteProtectionConfig(uint32_t SDRAM_Bank, FunctionalState NewState)
{
/* Check the parameter */
assert_param(IS_FUNCTIONAL_STATE(NewState));
assert_param(IS_FMC_SDRAM_BANK(SDRAM_Bank));
if (NewState != DISABLE)
{
FMC_Bank5_6->SDCR[SDRAM_Bank] |= FMC_Write_Protection_Enable;
}
else
{
FMC_Bank5_6->SDCR[SDRAM_Bank] &= SDCR_WriteProtection_RESET;
}
}
/**
* @}
*/
/** @defgroup FMC_Group5 Interrupts and flags management functions
* @brief Interrupts and flags management functions
*
@verbatim
===============================================================================
##### Interrupts and flags management functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Enables or disables the specified FMC interrupts.
* @param FMC_Bank: specifies the FMC Bank to be used
* This parameter can be one of the following values:
* @arg FMC_Bank2_NAND: FMC Bank2 NAND
* @arg FMC_Bank3_NAND: FMC Bank3 NAND
* @arg FMC_Bank4_PCCARD: FMC Bank4 PCCARD
* @arg FMC_Bank1_SDRAM: FMC Bank1 SDRAM
* @arg FMC_Bank2_SDRAM: FMC Bank2 SDRAM
* @param FMC_IT: specifies the FMC interrupt sources to be enabled or disabled.
* This parameter can be any combination of the following values:
* @arg FMC_IT_RisingEdge: Rising edge detection interrupt.
* @arg FMC_IT_Level: Level edge detection interrupt.
* @arg FMC_IT_FallingEdge: Falling edge detection interrupt.
* @arg FMC_IT_Refresh: Refresh error detection interrupt.
* @param NewState: new state of the specified FMC interrupts.
* This parameter can be: ENABLE or DISABLE.
* @retval None
*/
void FMC_ITConfig(uint32_t FMC_Bank, uint32_t FMC_IT, FunctionalState NewState)
{
assert_param(IS_FMC_IT_BANK(FMC_Bank));
assert_param(IS_FMC_IT(FMC_IT));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected FMC_Bank2 interrupts */
if(FMC_Bank == FMC_Bank2_NAND)
{
FMC_Bank2->SR2 |= FMC_IT;
}
/* Enable the selected FMC_Bank3 interrupts */
else if (FMC_Bank == FMC_Bank3_NAND)
{
FMC_Bank3->SR3 |= FMC_IT;
}
/* Enable the selected FMC_Bank4 interrupts */
else if (FMC_Bank == FMC_Bank4_PCCARD)
{
FMC_Bank4->SR4 |= FMC_IT;
}
/* Enable the selected FMC_Bank5_6 interrupt */
else
{
/* Enables the interrupt if the refresh error flag is set */
FMC_Bank5_6->SDRTR |= FMC_IT;
}
}
else
{
/* Disable the selected FMC_Bank2 interrupts */
if(FMC_Bank == FMC_Bank2_NAND)
{
FMC_Bank2->SR2 &= (uint32_t)~FMC_IT;
}
/* Disable the selected FMC_Bank3 interrupts */
else if (FMC_Bank == FMC_Bank3_NAND)
{
FMC_Bank3->SR3 &= (uint32_t)~FMC_IT;
}
/* Disable the selected FMC_Bank4 interrupts */
else if(FMC_Bank == FMC_Bank4_PCCARD)
{
FMC_Bank4->SR4 &= (uint32_t)~FMC_IT;
}
/* Disable the selected FMC_Bank5_6 interrupt */
else
{
/* Disables the interrupt if the refresh error flag is not set */
FMC_Bank5_6->SDRTR &= (uint32_t)~FMC_IT;
}
}
}
/**
* @brief Checks whether the specified FMC flag is set or not.
* @param FMC_Bank: specifies the FMC Bank to be used
* This parameter can be one of the following values:
* @arg FMC_Bank2_NAND: FMC Bank2 NAND
* @arg FMC_Bank3_NAND: FMC Bank3 NAND
* @arg FMC_Bank4_PCCARD: FMC Bank4 PCCARD
* @arg FMC_Bank1_SDRAM: FMC Bank1 SDRAM
* @arg FMC_Bank2_SDRAM: FMC Bank2 SDRAM
* @arg FMC_Bank1_SDRAM | FMC_Bank2_SDRAM: FMC Bank1 or Bank2 SDRAM
* @param FMC_FLAG: specifies the flag to check.
* This parameter can be one of the following values:
* @arg FMC_FLAG_RisingEdge: Rising edge detection Flag.
* @arg FMC_FLAG_Level: Level detection Flag.
* @arg FMC_FLAG_FallingEdge: Falling edge detection Flag.
* @arg FMC_FLAG_FEMPT: Fifo empty Flag.
* @arg FMC_FLAG_Refresh: Refresh error Flag.
* @arg FMC_FLAG_Busy: Busy status Flag.
* @retval The new state of FMC_FLAG (SET or RESET).
*/
FlagStatus FMC_GetFlagStatus(uint32_t FMC_Bank, uint32_t FMC_FLAG)
{
FlagStatus bitstatus = RESET;
uint32_t tmpsr = 0x00000000;
/* Check the parameters */
assert_param(IS_FMC_GETFLAG_BANK(FMC_Bank));
assert_param(IS_FMC_GET_FLAG(FMC_FLAG));
if(FMC_Bank == FMC_Bank2_NAND)
{
tmpsr = FMC_Bank2->SR2;
}
else if(FMC_Bank == FMC_Bank3_NAND)
{
tmpsr = FMC_Bank3->SR3;
}
else if(FMC_Bank == FMC_Bank4_PCCARD)
{
tmpsr = FMC_Bank4->SR4;
}
else
{
tmpsr = FMC_Bank5_6->SDSR;
}
/* Get the flag status */
if ((tmpsr & FMC_FLAG) != FMC_FLAG )
{
bitstatus = RESET;
}
else
{
bitstatus = SET;
}
/* Return the flag status */
return bitstatus;
}
/**
* @brief Clears the FMC's pending flags.
* @param FMC_Bank: specifies the FMC Bank to be used
* This parameter can be one of the following values:
* @arg FMC_Bank2_NAND: FMC Bank2 NAND
* @arg FMC_Bank3_NAND: FMC Bank3 NAND
* @arg FMC_Bank4_PCCARD: FMC Bank4 PCCARD
* @arg FMC_Bank1_SDRAM: FMC Bank1 SDRAM
* @arg FMC_Bank2_SDRAM: FMC Bank2 SDRAM
* @param FMC_FLAG: specifies the flag to clear.
* This parameter can be any combination of the following values:
* @arg FMC_FLAG_RisingEdge: Rising edge detection Flag.
* @arg FMC_FLAG_Level: Level detection Flag.
* @arg FMC_FLAG_FallingEdge: Falling edge detection Flag.
* @arg FMC_FLAG_Refresh: Refresh error Flag.
* @retval None
*/
void FMC_ClearFlag(uint32_t FMC_Bank, uint32_t FMC_FLAG)
{
/* Check the parameters */
assert_param(IS_FMC_GETFLAG_BANK(FMC_Bank));
assert_param(IS_FMC_CLEAR_FLAG(FMC_FLAG)) ;
if(FMC_Bank == FMC_Bank2_NAND)
{
FMC_Bank2->SR2 &= (~FMC_FLAG);
}
else if(FMC_Bank == FMC_Bank3_NAND)
{
FMC_Bank3->SR3 &= (~FMC_FLAG);
}
else if(FMC_Bank == FMC_Bank4_PCCARD)
{
FMC_Bank4->SR4 &= (~FMC_FLAG);
}
/* FMC_Bank5_6 SDRAM*/
else
{
FMC_Bank5_6->SDRTR &= (~FMC_FLAG);
}
}
/**
* @brief Checks whether the specified FMC interrupt has occurred or not.
* @param FMC_Bank: specifies the FMC Bank to be used
* This parameter can be one of the following values:
* @arg FMC_Bank2_NAND: FMC Bank2 NAND
* @arg FMC_Bank3_NAND: FMC Bank3 NAND
* @arg FMC_Bank4_PCCARD: FMC Bank4 PCCARD
* @arg FMC_Bank1_SDRAM: FMC Bank1 SDRAM
* @arg FMC_Bank2_SDRAM: FMC Bank2 SDRAM
* @param FMC_IT: specifies the FMC interrupt source to check.
* This parameter can be one of the following values:
* @arg FMC_IT_RisingEdge: Rising edge detection interrupt.
* @arg FMC_IT_Level: Level edge detection interrupt.
* @arg FMC_IT_FallingEdge: Falling edge detection interrupt.
* @arg FMC_IT_Refresh: Refresh error detection interrupt.
* @retval The new state of FMC_IT (SET or RESET).
*/
ITStatus FMC_GetITStatus(uint32_t FMC_Bank, uint32_t FMC_IT)
{
ITStatus bitstatus = RESET;
uint32_t tmpsr = 0x0;
uint32_t tmpsr2 = 0x0;
uint32_t itstatus = 0x0;
uint32_t itenable = 0x0;
/* Check the parameters */
assert_param(IS_FMC_IT_BANK(FMC_Bank));
assert_param(IS_FMC_GET_IT(FMC_IT));
if(FMC_Bank == FMC_Bank2_NAND)
{
tmpsr = FMC_Bank2->SR2;
}
else if(FMC_Bank == FMC_Bank3_NAND)
{
tmpsr = FMC_Bank3->SR3;
}
else if(FMC_Bank == FMC_Bank4_PCCARD)
{
tmpsr = FMC_Bank4->SR4;
}
/* FMC_Bank5_6 SDRAM*/
else
{
tmpsr = FMC_Bank5_6->SDRTR;
tmpsr2 = FMC_Bank5_6->SDSR;
}
/* get the IT enable bit status*/
itenable = tmpsr & FMC_IT;
/* get the corresponding IT Flag status*/
if((FMC_Bank == FMC_Bank1_SDRAM) || (FMC_Bank == FMC_Bank2_SDRAM))
{
itstatus = tmpsr2 & FMC_SDSR_RE;
}
else
{
itstatus = tmpsr & (FMC_IT >> 3);
}
if ((itstatus != (uint32_t)RESET) && (itenable != (uint32_t)RESET))
{
bitstatus = SET;
}
else
{
bitstatus = RESET;
}
return bitstatus;
}
/**
* @brief Clears the FMC's interrupt pending bits.
* @param FMC_Bank: specifies the FMC Bank to be used
* This parameter can be one of the following values:
* @arg FMC_Bank2_NAND: FMC Bank2 NAND
* @arg FMC_Bank3_NAND: FMC Bank3 NAND
* @arg FMC_Bank4_PCCARD: FMC Bank4 PCCARD
* @arg FMC_Bank1_SDRAM: FMC Bank1 SDRAM
* @arg FMC_Bank2_SDRAM: FMC Bank2 SDRAM
* @param FMC_IT: specifies the interrupt pending bit to clear.
* This parameter can be any combination of the following values:
* @arg FMC_IT_RisingEdge: Rising edge detection interrupt.
* @arg FMC_IT_Level: Level edge detection interrupt.
* @arg FMC_IT_FallingEdge: Falling edge detection interrupt.
* @arg FMC_IT_Refresh: Refresh error detection interrupt.
* @retval None
*/
void FMC_ClearITPendingBit(uint32_t FMC_Bank, uint32_t FMC_IT)
{
/* Check the parameters */
assert_param(IS_FMC_IT_BANK(FMC_Bank));
assert_param(IS_FMC_IT(FMC_IT));
if(FMC_Bank == FMC_Bank2_NAND)
{
FMC_Bank2->SR2 &= ~(FMC_IT >> 3);
}
else if(FMC_Bank == FMC_Bank3_NAND)
{
FMC_Bank3->SR3 &= ~(FMC_IT >> 3);
}
else if(FMC_Bank == FMC_Bank4_PCCARD)
{
FMC_Bank4->SR4 &= ~(FMC_IT >> 3);
}
/* FMC_Bank5_6 SDRAM*/
else
{
FMC_Bank5_6->SDRTR |= FMC_SDRTR_CRE;
}
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/