ugfx/drivers/gdisp/ILI9320/gdisp_lld.c

528 lines
18 KiB
C

/*
ChibiOS/RT - Copyright (C) 2012
Joel Bodenmann aka Tectu <joel@unormal.org>
This file is part of ChibiOS/GFX.
ChibiOS/GFX is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
ChibiOS/GFX is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* @file drivers/gdisp/ILI9320/gdisp_lld.c
* @brief GDISP Graphics Driver subsystem low level driver source for the SSD1289 display.
*
* @addtogroup GDISP
* @{
*/
#include "ch.h"
#include "hal.h"
#include "gdisp.h"
#if GFX_USE_GDISP /*|| defined(__DOXYGEN__)*/
/* Include the emulation code for things we don't support */
#include "gdisp_emulation.c"
#include "ili9320_lld.c.h"
/*===========================================================================*/
/* Driver interrupt handlers. */
/*===========================================================================*/
/*===========================================================================*/
/* Driver exported functions. */
/*===========================================================================*/
/* ---- Required Routines ---- */
/*
The following 2 routines are required.
All other routines are optional.
*/
/**
* @brief Low level GDISP driver initialization.
*
* @notapi
*/
bool_t GDISP_LLD(init)(void) {
#if defined(GDISP_USE_FSMC)
/* FSMC setup for F1/F3 */
rccEnableAHB(RCC_AHBENR_FSMCEN, 0);
/* set pins to FSMC mode */
IOBus busD = {GPIOD, PAL_WHOLE_PORT, 0};
IOBus busE = {GPIOE, PAL_WHOLE_PORT, 0};
palSetBusMode(&busD, PAL_MODE_STM32_ALTERNATE_PUSHPULL );
palSetBusMode(&busE, PAL_MODE_STM32_ALTERNATE_PUSHPULL );
// const unsigned char FSMC_Bank = 0;
const unsigned char FSMC_Bank = 6;
/* FSMC timing */
FSMC_Bank1->BTCR[FSMC_Bank+1] = (10) | (10 << 8) | (10 << 16);
/* Bank1 NOR/SRAM control register configuration
* This is actually not needed as already set by default after reset */
FSMC_Bank1->BTCR[FSMC_Bank] = FSMC_BCR1_MWID_0 | FSMC_BCR1_WREN | FSMC_BCR1_MBKEN;
#endif
palSetPadMode(GPIOE, GPIOE_TFT_RST, PAL_MODE_OUTPUT_PUSHPULL);
palSetPad(GPIOE, GPIOE_TFT_RST);
uint32_t DISPLAY_CODE = lld_lcdReadReg(0);
lld_lcdWriteReg(0x0000, 0x0001); //start Int. osc
lld_lcdDelay(500);
lld_lcdWriteReg(0x0001, 0x0100); //Set SS bit (shift direction of outputs is from S720 to S1)
lld_lcdWriteReg(0x0002, 0x0700); //select the line inversion
lld_lcdWriteReg(0x0003, 0x1038); //Entry mode(Horizontal : increment,Vertical : increment, AM=1)
lld_lcdWriteReg(0x0004, 0x0000); //Resize control(No resizing)
lld_lcdWriteReg(0x0008, 0x0202); //front and back porch 2 lines
lld_lcdWriteReg(0x0009, 0x0000); //select normal scan
lld_lcdWriteReg(0x000A, 0x0000); //display control 4
lld_lcdWriteReg(0x000C, 0x0000); //system interface(2 transfer /pixel), internal sys clock,
lld_lcdWriteReg(0x000D, 0x0000); //Frame marker position
lld_lcdWriteReg(0x000F, 0x0000); //selects clk, enable and sync signal polarity,
lld_lcdWriteReg(0x0010, 0x0000); //
lld_lcdWriteReg(0x0011, 0x0000); //power control 2 reference voltages = 1:1,
lld_lcdWriteReg(0x0012, 0x0000); //power control 3 VRH
lld_lcdWriteReg(0x0013, 0x0000); //power control 4 VCOM amplitude
lld_lcdDelay(500);
lld_lcdWriteReg(0x0010, 0x17B0); //power control 1 BT,AP
lld_lcdWriteReg(0x0011, 0x0137); //power control 2 DC,VC
lld_lcdDelay(500);
lld_lcdWriteReg(0x0012, 0x0139); //power control 3 VRH
lld_lcdDelay(500);
lld_lcdWriteReg(0x0013, 0x1d00); //power control 4 vcom amplitude
lld_lcdWriteReg(0x0029, 0x0011); //power control 7 VCOMH
lld_lcdDelay(500);
lld_lcdWriteReg(0x0030, 0x0007);
lld_lcdWriteReg(0x0031, 0x0403);
lld_lcdWriteReg(0x0032, 0x0404);
lld_lcdWriteReg(0x0035, 0x0002);
lld_lcdWriteReg(0x0036, 0x0707);
lld_lcdWriteReg(0x0037, 0x0606);
lld_lcdWriteReg(0x0038, 0x0106);
lld_lcdWriteReg(0x0039, 0x0007);
lld_lcdWriteReg(0x003c, 0x0700);
lld_lcdWriteReg(0x003d, 0x0707);
lld_lcdWriteReg(0x0020, 0x0000); //starting Horizontal GRAM Address
lld_lcdWriteReg(0x0021, 0x0000); //starting Vertical GRAM Address
lld_lcdWriteReg(0x0050, 0x0000); //Horizontal GRAM Start Position
lld_lcdWriteReg(0x0051, 0x00EF); //Horizontal GRAM end Position
lld_lcdWriteReg(0x0052, 0x0000); //Vertical GRAM Start Position
lld_lcdWriteReg(0x0053, 0x013F); //Vertical GRAM end Position
switch (DISPLAY_CODE) {
case 0x9320:
lld_lcdWriteReg(0x0060, 0x2700); //starts scanning from G1, and 320 drive lines
break;
case 0x9325:
lld_lcdWriteReg(0x0060, 0xA700); //starts scanning from G1, and 320 drive lines
break;
}
lld_lcdWriteReg(0x0061, 0x0001); //fixed base display
lld_lcdWriteReg(0x006a, 0x0000); //no scroll
lld_lcdWriteReg(0x0090, 0x0010); //set Clocks/Line =16, Internal Operation Clock Frequency=fosc/1,
lld_lcdWriteReg(0x0092, 0x0000); //set gate output non-overlap period=0
lld_lcdWriteReg(0x0093, 0x0003); //set Source Output Position=3
lld_lcdWriteReg(0x0095, 0x0110); //RGB interface(Clocks per line period=16 clocks)
lld_lcdWriteReg(0x0097, 0x0110); //set Gate Non-overlap Period 0 locksc
lld_lcdWriteReg(0x0098, 0x0110); //
lld_lcdWriteReg(0x0007, 0x0173); //display On
/* Initialise the GDISP structure */
GDISP.Width = GDISP_SCREEN_WIDTH;
GDISP.Height = GDISP_SCREEN_HEIGHT;
GDISP.Orientation = GDISP_ROTATE_0;
GDISP.Powermode = powerOn;
GDISP.Backlight = 100;
GDISP.Contrast = 50;
#if GDISP_NEED_VALIDATION || GDISP_NEED_CLIP
GDISP.clipx0 = 0;
GDISP.clipy0 = 0;
GDISP.clipx1 = GDISP.Width;
GDISP.clipy1 = GDISP.Height;
#endif
return TRUE;
}
/**
* @brief Draws a pixel on the display.
*
* @param[in] x X location of the pixel
* @param[in] y Y location of the pixel
* @param[in] color The color of the pixel
*
* @notapi
*/
void GDISP_LLD(drawpixel)(coord_t x, coord_t y, color_t color) {
#if GDISP_NEED_VALIDATION || GDISP_NEED_CLIP
if (x < GDISP.clipx0 || y < GDISP.clipy0 || x >= GDISP.clipx1 || y >= GDISP.clipy1) return;
#endif
lld_lcdSetCursor(x, y);
lld_lcdWriteReg(0x0022, color);
}
/* ---- Optional Routines ---- */
/*
All the below routines are optional.
Defining them will increase speed but everything
will work if they are not defined.
If you are not using a routine - turn it off using
the appropriate GDISP_HARDWARE_XXXX macro.
Don't bother coding for obvious similar routines if
there is no performance penalty as the emulation software
makes a good job of using similar routines.
eg. If gfillarea() is defined there is little
point in defining clear() unless the
performance bonus is significant.
For good performance it is suggested to implement
fillarea() and blitarea().
*/
#if GDISP_HARDWARE_CLEARS || defined(__DOXYGEN__)
/**
* @brief Clear the display.
* @note Optional - The high level driver can emulate using software.
*
* @param[in] color The color of the pixel
*
* @notapi
*/
void GDISP_LLD(clear)(color_t color) {
unsigned i;
lld_lcdSetCursor(0, 0);
lld_lcdWriteStreamStart();
for(i = 0; i < GDISP_SCREEN_WIDTH * GDISP_SCREEN_HEIGHT; i++)
lld_lcdWriteData(color);
lld_lcdWriteStreamStop();
}
#endif
#if GDISP_HARDWARE_FILLS || defined(__DOXYGEN__)
/**
* @brief Fill an area with a color.
* @note Optional - The high level driver can emulate using software.
*
* @param[in] x, y The start filled area
* @param[in] cx, cy The width and height to be filled
* @param[in] color The color of the fill
*
* @notapi
*/
void GDISP_LLD(fillarea)(coord_t x, coord_t y, coord_t cx, coord_t cy, color_t color) {
#if GDISP_NEED_VALIDATION || GDISP_NEED_CLIP
if (x < GDISP.clipx0) { cx -= GDISP.clipx0 - x; x = GDISP.clipx0; }
if (y < GDISP.clipy0) { cy -= GDISP.clipy0 - y; y = GDISP.clipy0; }
if (cx <= 0 || cy <= 0 || x >= GDISP.clipx1 || y >= GDISP.clipy1) return;
if (x+cx > GDISP.clipx1) cx = GDISP.clipx1 - x;
if (y+cy > GDISP.clipy1) cy = GDISP.clipy1 - y;
#endif
unsigned i, area;
area = cx*cy;
lld_lcdSetViewPort(x, y, cx, cy);
lld_lcdWriteStreamStart();
for(i = 0; i < area; i++)
lld_lcdWriteData(color);
lld_lcdWriteStreamStop();
lld_lcdResetViewPort();
}
#endif
#if GDISP_HARDWARE_BITFILLS || defined(__DOXYGEN__)
/**
* @brief Fill an area with a bitmap.
* @note Optional - The high level driver can emulate using software.
*
* @param[in] x, y The start filled area
* @param[in] cx, cy The width and height to be filled
* @param[in] srcx, srcy The bitmap position to start the fill from
* @param[in] srccx The width of a line in the bitmap.
* @param[in] buffer The pixels to use to fill the area.
*
* @notapi
*/
void GDISP_LLD(blitareaex)(coord_t x, coord_t y, coord_t cx, coord_t cy, coord_t srcx, coord_t srcy, coord_t srccx, const pixel_t *buffer) {
coord_t endx, endy;
unsigned lg;
#if GDISP_NEED_VALIDATION || GDISP_NEED_CLIP
if (x < GDISP.clipx0) { cx -= GDISP.clipx0 - x; srcx += GDISP.clipx0 - x; x = GDISP.clipx0; }
if (y < GDISP.clipy0) { cy -= GDISP.clipy0 - y; srcy += GDISP.clipy0 - y; y = GDISP.clipy0; }
if (srcx+cx > srccx) cx = srccx - srcx;
if (cx <= 0 || cy <= 0 || x >= GDISP.clipx1 || y >= GDISP.clipy1) return;
if (x+cx > GDISP.clipx1) cx = GDISP.clipx1 - x;
if (y+cy > GDISP.clipy1) cy = GDISP.clipy1 - y;
#endif
lld_lcdSetViewPort(x, y, cx, cy);
lld_lcdWriteStreamStart();
endx = srcx + cx;
endy = y + cy;
lg = srccx - cx;
buffer += srcx + srcy * srccx;
for(; y < endy; y++, buffer += lg)
for(x=srcx; x < endx; x++)
lld_lcdWriteData(*buffer++);
lld_lcdWriteStreamStop();
lld_lcdResetViewPort();
}
#endif
#if (GDISP_NEED_PIXELREAD && GDISP_HARDWARE_PIXELREAD) || defined(__DOXYGEN__)
/**
* @brief Get the color of a particular pixel.
* @note Optional.
* @note If x,y is off the screen, the result is undefined.
*
* @param[in] x, y The start of the text
*
* @notapi
*/
color_t GDISP_LLD(getpixelcolor)(coord_t x, coord_t y) {
color_t color;
#if GDISP_NEED_VALIDATION || GDISP_NEED_CLIP
if (x < 0 || x >= GDISP.Width || y < 0 || y >= GDISP.Height) return 0;
#endif
lld_lcdSetCursor(x, y);
lld_lcdWriteStreamStart();
color = lld_lcdReadData();
color = lld_lcdReadData();
lld_lcdWriteStreamStop();
return color;
}
#endif
#if (GDISP_NEED_SCROLL && GDISP_HARDWARE_SCROLL) || defined(__DOXYGEN__)
/**
* @brief Scroll vertically a section of the screen.
* @note Optional.
* @note If x,y + cx,cy is off the screen, the result is undefined.
* @note If lines is >= cy, it is equivelent to a area fill with bgcolor.
*
* @param[in] x, y The start of the area to be scrolled
* @param[in] cx, cy The size of the area to be scrolled
* @param[in] lines The number of lines to scroll (Can be positive or negative)
* @param[in] bgcolor The color to fill the newly exposed area.
*
* @notapi
*/
void GDISP_LLD(verticalscroll)(coord_t x, coord_t y, coord_t cx, coord_t cy, int lines, color_t bgcolor) {
static color_t buf[((GDISP_SCREEN_HEIGHT > GDISP_SCREEN_WIDTH ) ? GDISP_SCREEN_HEIGHT : GDISP_SCREEN_WIDTH)];
coord_t row0, row1;
unsigned i, gap, abslines;
#if GDISP_NEED_VALIDATION || GDISP_NEED_CLIP
if (x < GDISP.clipx0) { cx -= GDISP.clipx0 - x; x = GDISP.clipx0; }
if (y < GDISP.clipy0) { cy -= GDISP.clipy0 - y; y = GDISP.clipy0; }
if (!lines || cx <= 0 || cy <= 0 || x >= GDISP.clipx1 || y >= GDISP.clipy1) return;
if (x+cx > GDISP.clipx1) cx = GDISP.clipx1 - x;
if (y+cy > GDISP.clipy1) cy = GDISP.clipy1 - y;
#endif
abslines = lines < 0 ? -lines : lines;
if (abslines >= cy) {
abslines = cy;
gap = 0;
} else {
gap = cy - abslines;
for(i = 0; i < gap; i++) {
if(lines > 0) {
row0 = y + i + lines;
row1 = y + i;
} else {
row0 = (y - i - 1) + lines;
row1 = (y - i - 1);
}
/* read row0 into the buffer and then write at row1*/
lld_lcdSetViewPort(x, row0, cx, 1);
lld_lcdReadStreamStart();
lld_lcdReadStream(buf, cx);
lld_lcdReadStreamStop();
lld_lcdSetViewPort(x, row1, cx, 1);
lld_lcdWriteStreamStart();
lld_lcdWriteStream(buf, cx);
lld_lcdWriteStreamStop();
}
}
/* fill the remaining gap */
lld_lcdSetViewPort(x, lines > 0 ? (y+gap) : y, cx, abslines);
lld_lcdWriteStreamStart();
gap = cx*abslines;
for(i = 0; i < gap; i++) lld_lcdWriteData(bgcolor);
lld_lcdWriteStreamStop();
lld_lcdResetViewPort();
}
#endif
#if (GDISP_NEED_CONTROL && GDISP_HARDWARE_CONTROL) || defined(__DOXYGEN__)
/**
* @brief Driver Control
* @details Unsupported control codes are ignored.
* @note The value parameter should always be typecast to (void *).
* @note There are some predefined and some specific to the low level driver.
* @note GDISP_CONTROL_POWER - Takes a gdisp_powermode_t
* GDISP_CONTROL_ORIENTATION - Takes a gdisp_orientation_t
* GDISP_CONTROL_BACKLIGHT - Takes an int from 0 to 100. For a driver
* that only supports off/on anything other
* than zero is on.
* GDISP_CONTROL_CONTRAST - Takes an int from 0 to 100.
* GDISP_CONTROL_LLD - Low level driver control constants start at
* this value.
*
* @param[in] what What to do.
* @param[in] value The value to use (always cast to a void *).
*
* @notapi
*/
void GDISP_LLD(control)(unsigned what, void *value) {
switch(what) {
case GDISP_CONTROL_POWER:
if(GDISP.Powermode == (gdisp_powermode_t)value)
return;
switch((gdisp_powermode_t)value) {
case powerOff:
lld_lcdWriteReg(0x0007, 0x0000);
lld_lcdWriteReg(0x0010, 0x0000);
lld_lcdWriteReg(0x0011, 0x0000);
lld_lcdWriteReg(0x0012, 0x0000);
lld_lcdWriteReg(0x0013, 0x0000);
break;
case powerOn:
//*************Power On sequence ******************//
lld_lcdWriteReg(0x0010, 0x0000); /* SAP, BT[3:0], AP, DSTB, SLP, STB */
lld_lcdWriteReg(0x0011, 0x0000); /* DC1[2:0], DC0[2:0], VC[2:0] */
lld_lcdWriteReg(0x0012, 0x0000); /* VREG1OUT voltage */
lld_lcdWriteReg(0x0013, 0x0000); /* VDV[4:0] for VCOM amplitude */
lld_lcdDelay(2000); /* Dis-charge capacitor power voltage */
lld_lcdWriteReg(0x0010, 0x17B0); /* SAP, BT[3:0], AP, DSTB, SLP, STB */
lld_lcdWriteReg(0x0011, 0x0147); /* DC1[2:0], DC0[2:0], VC[2:0] */
lld_lcdDelay(500);
lld_lcdWriteReg(0x0012, 0x013C); /* VREG1OUT voltage */
lld_lcdDelay(500);
lld_lcdWriteReg(0x0013, 0x0E00); /* VDV[4:0] for VCOM amplitude */
lld_lcdWriteReg(0x0029, 0x0009); /* VCM[4:0] for VCOMH */
lld_lcdDelay(500);
lld_lcdWriteReg(0x0007, 0x0173); /* 262K color and display ON */
if(GDISP.Powermode != powerSleep || GDISP.Powermode != powerDeepSleep)
GDISP_LLD(init)();
break;
case powerSleep:
lld_lcdWriteReg(0x0007, 0x0000); /* display OFF */
lld_lcdWriteReg(0x0010, 0x0000); /* SAP, BT[3:0], APE, AP, DSTB, SLP */
lld_lcdWriteReg(0x0011, 0x0000); /* DC1[2:0], DC0[2:0], VC[2:0] */
lld_lcdWriteReg(0x0012, 0x0000); /* VREG1OUT voltage */
lld_lcdWriteReg(0x0013, 0x0000); /* VDV[4:0] for VCOM amplitude */
lld_lcdDelay(2000); /* Dis-charge capacitor power voltage */
lld_lcdWriteReg(0x0010, 0x0002); /* SAP, BT[3:0], APE, AP, DSTB, SLP */
break;
case powerDeepSleep:
lld_lcdWriteReg(0x0007, 0x0000); /* display OFF */
lld_lcdWriteReg(0x0010, 0x0000); /* SAP, BT[3:0], APE, AP, DSTB, SLP */
lld_lcdWriteReg(0x0011, 0x0000); /* DC1[2:0], DC0[2:0], VC[2:0] */
lld_lcdWriteReg(0x0012, 0x0000); /* VREG1OUT voltage */
lld_lcdWriteReg(0x0013, 0x0000); /* VDV[4:0] for VCOM amplitude */
lld_lcdDelay(2000); /* Dis-charge capacitor power voltage */
lld_lcdWriteReg(0x0010, 0x0004); /* SAP, BT[3:0], APE, AP, DSTB, SLP */
break;
default:
return;
}
GDISP.Powermode = (gdisp_powermode_t)value;
return;
case GDISP_CONTROL_ORIENTATION:
if(GDISP.Orientation == (gdisp_orientation_t)value)
return;
switch((gdisp_orientation_t)value) {
case GDISP_ROTATE_0:
/* ToDo */
GDISP.Height = GDISP_SCREEN_HEIGHT;
GDISP.Width = GDISP_SCREEN_WIDTH;
break;
case GDISP_ROTATE_90:
/* ToDo */
GDISP.Height = GDISP_SCREEN_WIDTH;
GDISP.Width = GDISP_SCREEN_HEIGHT;
break;
case GDISP_ROTATE_180:
/* ToDo */
GDISP.Height = GDISP_SCREEN_HEIGHT;
GDISP.Width = GDISP_SCREEN_WIDTH;
break;
case GDISP_ROTATE_270:
/* ToDo */
GDISP.Height = GDISP_SCREEN_WIDTH;
GDISP.Width = GDISP_SCREEN_HEIGHT;
break;
default:
return;
}
#if GDISP_NEED_CLIP || GDISP_NEED_VALIDATION
GDISP.clipx0 = 0;
GDISP.clipy0 = 0;
GDISP.clipx1 = GDISP.Width;
GDISP.clipy1 = GDISP.Height;
#endif
GDISP.Orientation = (gdisp_orientation_t)value;
return;
case GDISP_CONTROL_BACKLIGHT:
/* ToDo */
break;
case GDISP_CONTROL_CONTRAST:
/* ToDo */
break;
default:
return;
}
}
#endif
#endif /* GFX_USE_GDISP */
/** @} */