ugfx/drivers/gdisp/Nokia6610GE8/gdisp_lld_Nokia6610GE8.c

573 lines
21 KiB
C
Raw Normal View History

/*
2013-06-15 11:37:22 +00:00
* This file is subject to the terms of the GFX License. If a copy of
2013-05-03 14:36:17 +00:00
* the license was not distributed with this file, you can obtain one at:
*
2013-07-21 20:20:37 +00:00
* http://ugfx.org/license.html
2013-05-03 14:36:17 +00:00
*/
/**
* @file drivers/gdisp/Nokia6610GE8/gdisp_lld.c
* @brief GDISP Graphics Driver subsystem low level driver source for the Nokia6610 GE8 display.
*
* @addtogroup GDISP
* @{
*/
#include "gfx.h"
#if GFX_USE_GDISP
/**
* This is for the EPSON (GE8) controller driving a Nokia6610 color LCD display.
* Note that there is also a PHILIPS (GE12) controller for the same display that this code
* does not support.
*
* The controller drives a 132x132 display but a 1 pixel surround is not visible
* which gives a visible area of 130x130.
*
* This controller does not support reading back over the SPI interface.
* Additionally, the Olimex board doesn't even connect the pin.
*
* The hardware is capable of doing full width vertical scrolls aligned
* on a 4 line boundary however that is not sufficient to support general vertical scrolling.
* We also can't manually do read/modify scrolling because we can't read in SPI mode.
*
* The controller has some quirkyness when operating in other than rotation 0 mode.
* When any direction is decremented it starts at location 0 rather than the end of
* the area. Whilst this can be handled when we know the specific operation (pixel, fill, blit)
* it cannot be handled in a generic stream operation. So, when orientation support is turned
* on (and needed) we use complex operation specific routines instead of simple streaming
* routines. This has a (small) performance penalty and a significant code size penalty so
* don't turn on orientation support unless you really need it.
*
* Some of the more modern controllers have a broken command set. If you have one of these
* you will recognise it by the colors being off on anything drawn after an odd (as opposed to
* even) pixel count area being drawn. If so then set GDISP_GE8_BROKEN_CONTROLLER to TRUE
* on your gdisp_lld_board.h file. The price is that streaming calls that are completed
* without exactly the window size write operations and where the number of write operations
* is odd (rather than even), it will draw an extra pixel. If this is important to you, turn on
* orientation support and the streaming operations will be emulated (as described above).
*/
#if defined(GDISP_SCREEN_HEIGHT)
#warning "GDISP: This low level driver does not support setting a screen size. It is being ignored."
#undef GDISP_SCREEN_HEIGHT
#endif
#if defined(GDISP_SCREEN_WIDTH)
#warning "GDISP: This low level driver does not support setting a screen size. It is being ignored."
#undef GDISP_SCREEN_WIDTH
#endif
#define GDISP_DRIVER_VMT GDISPVMT_Nokia6610GE8
#include "drivers/gdisp/Nokia6610GE8/gdisp_lld_config.h"
#include "src/gdisp/driver.h"
#include "board_Nokia6610GE8.h"
/*===========================================================================*/
/* Driver local definitions. */
/*===========================================================================*/
#include "drivers/gdisp/Nokia6610GE8/GE8.h"
#define GDISP_SCAN_LINES 132
// Set parameters if they are not already set
#ifndef GDISP_GE8_BROKEN_CONTROLLER
#define GDISP_GE8_BROKEN_CONTROLLER TRUE
#endif
#ifndef GDISP_SCREEN_HEIGHT
#define GDISP_SCREEN_HEIGHT 130
#endif
#ifndef GDISP_SCREEN_WIDTH
#define GDISP_SCREEN_WIDTH 130
#endif
#ifndef GDISP_RAM_X_OFFSET
#define GDISP_RAM_X_OFFSET 0 /* Offset in RAM of visible area */
#endif
#ifndef GDISP_RAM_Y_OFFSET
#define GDISP_RAM_Y_OFFSET 2 /* Offset in RAM of visible area */
#endif
#ifndef GDISP_SLEEP_SIZE
#define GDISP_SLEEP_SIZE 32 /* Sleep mode window lines */
#endif
#ifndef GDISP_SLEEP_POS
#define GDISP_SLEEP_POS ((GDISP_SCAN_LINES-GDISP_SLEEP_SIZE)/2)
#endif
#ifndef GDISP_INITIAL_CONTRAST
#define GDISP_INITIAL_CONTRAST 60
#endif
#ifndef GDISP_INITIAL_BACKLIGHT
#define GDISP_INITIAL_BACKLIGHT 100
#endif
/*===========================================================================*/
/* Driver exported variables. */
/*===========================================================================*/
/*===========================================================================*/
/* Driver local variables. */
/*===========================================================================*/
#if GDISP_HARDWARE_STREAM_WRITE
typedef struct dvrPriv {
uint16_t savecolor;
#if GDISP_GE8_BROKEN_CONTROLLER
uint16_t firstcolor;
#endif
} dvrPriv;
#define PRIV ((dvrPriv *)g->priv)
#endif
#define GDISP_FLG_ODDBYTE (GDISP_FLG_DRIVER<<0)
#define GDISP_FLG_RUNBYTE (GDISP_FLG_DRIVER<<1)
/*===========================================================================*/
/* Driver local functions. */
/*===========================================================================*/
// Some macros just to make reading the code easier
#define delayms(ms) gfxSleepMilliseconds(ms)
#define write_data2(g, d1, d2) { write_data(g, d1); write_data(g, d2); }
#define write_data3(g, d1, d2, d3) { write_data(g, d1); write_data(g, d2); write_data(g, d3); }
#define write_data4(g, d1, d2, d3, d4) { write_data(g, d1); write_data(g, d2); write_data(g, d3); write_data(g, d4); }
#define write_cmd1(g, cmd, d1) { write_index(g, cmd); write_data(g, d1); }
#define write_cmd2(g, cmd, d1, d2) { write_index(g, cmd); write_data2(g, d1, d2); }
#define write_cmd3(g, cmd, d1, d2, d3) { write_index(g, cmd); write_data3(g, d1, d2, d3); }
#define write_cmd4(g, cmd, d1, d2, d3, d4) { write_index(g, cmd); write_data4(g, d1, d2, d3, d4); }
static inline void set_viewport(GDisplay* g) {
#if GDISP_NOKIA_ORIENTATION && GDISP_NEED_CONTROL
switch(g->g.Orientation) {
default:
case GDISP_ROTATE_0:
write_cmd2(g, CASET, GDISP_RAM_X_OFFSET+g->p.x, GDISP_RAM_X_OFFSET+g->p.x); // Column address set
write_cmd2(g, PASET, GDISP_RAM_Y_OFFSET+g->p.y, GDISP_RAM_Y_OFFSET+g->p.y); // Page address set
break;
case GDISP_ROTATE_90:
write_cmd2(g, CASET, GDISP_RAM_X_OFFSET+g->p.y, GDISP_RAM_X_OFFSET+g->p.y);
write_cmd2(g, PASET, GDISP_RAM_Y_OFFSET-1+g->g.Width-g->p.x, GDISP_RAM_Y_OFFSET-1+g->g.Width-g->p.x);
break;
case GDISP_ROTATE_180:
write_cmd2(g, CASET, GDISP_RAM_X_OFFSET-1+g->g.Width-g->p.x, GDISP_RAM_X_OFFSET-1+g->g.Width-g->p.x);
write_cmd2(g, PASET, GDISP_RAM_Y_OFFSET-1+g->g.Height-g->p.y, GDISP_RAM_Y_OFFSET-1+g->g.Height-g->p.y);
break;
case GDISP_ROTATE_270:
write_cmd2(g, CASET, GDISP_RAM_X_OFFSET-1+g->g.Height-g->p.y, GDISP_RAM_X_OFFSET-1+g->g.Height-g->p.y);
write_cmd2(g, PASET, GDISP_RAM_Y_OFFSET+g->p.x, GDISP_RAM_Y_OFFSET+g->p.x);
break;
}
#else
write_cmd2(g, CASET, GDISP_RAM_X_OFFSET+g->p.x, GDISP_RAM_X_OFFSET+g->p.x+g->p.cx-1); // Column address set
write_cmd2(g, PASET, GDISP_RAM_Y_OFFSET+g->p.y, GDISP_RAM_Y_OFFSET+g->p.y+g->p.cy-1); // Page address set
#endif
write_index(g, RAMWR);
}
/*===========================================================================*/
/* Driver exported functions. */
/*===========================================================================*/
LLDSPEC bool_t gdisp_lld_init(GDisplay *g) {
#if GDISP_HARDWARE_STREAM_WRITE
g->priv = gfxAlloc(sizeof(dvrPriv));
#else
g->priv = 0;
#endif
// Initialise the board interface
init_board(g);
// Hardware reset
setpin_reset(g, TRUE);
delayms(20);
setpin_reset(g, FALSE);
delayms(20);
// Get the bus for the following initialisation commands
acquire_bus(g);
write_cmd4(g, DISCTL, 0x00, GDISP_SCAN_LINES/4-1, 0x0A, 0x00); // Display control - How the controller drives the LCD
// P1: 0x00 = 2 divisions, switching period=8 (default)
// P2: 0x20 = nlines/4 - 1 = 132/4 - 1 = 32)
// P3: 0x0A = standard inverse highlight, inversion every frame
// P4: 0x00 = dispersion on
write_cmd1(g, COMSCN, 0x01); // COM scan - How the LCD is connected to the controller
// P1: 0x01 = Scan 1->80, 160<-81
write_index(g, OSCON); // Internal oscillator ON
write_index(g, SLPOUT); // Sleep out
write_cmd1(g, PWRCTR, 0x0F); // Power control - reference voltage regulator on, circuit voltage follower on, BOOST ON
write_cmd3(g, DATCTL, 0x00, 0x00, 0x02); // Data control
// P1: 0x00 = page address normal, column address normal, address scan in column direction
// P2: 0x00 = RGB sequence (default value)
// P3: 0x02 = 4 bits per colour (Type A)
write_cmd2(g, VOLCTR, 64*GDISP_INITIAL_CONTRAST/101, 0x03); // Voltage control (contrast setting)
// P1 = Contrast (0..63)
// P2 = 3 resistance ratio (only value that works)
delayms(100); // Allow power supply to stabilise
write_index(g, DISON); // Turn on the display
// Finish Init
post_init_board(g);
// Release the bus
release_bus(g);
/* Turn on the back-light */
set_backlight(g, GDISP_INITIAL_BACKLIGHT);
/* Initialise the GDISP structure to match */
g->g.Orientation = GDISP_ROTATE_0;
g->g.Powermode = powerOn;
g->g.Backlight = GDISP_INITIAL_BACKLIGHT;
g->g.Contrast = GDISP_INITIAL_CONTRAST;
g->g.Width = GDISP_SCREEN_WIDTH;
g->g.Height = GDISP_SCREEN_HEIGHT;
return TRUE;
}
#if GDISP_HARDWARE_STREAM_WRITE
LLDSPEC void gdisp_lld_write_start(GDisplay *g) {
acquire_bus(g);
set_viewport(g);
g->flags &= ~(GDISP_FLG_ODDBYTE|GDISP_FLG_RUNBYTE);
}
LLDSPEC void gdisp_lld_write_color(GDisplay *g) {
uint16_t c;
c = gdispColor2Native(g->p.color);
#if GDISP_GE8_BROKEN_CONTROLLER
if (!(g->flags & GDISP_FLG_RUNBYTE)) {
PRIV->firstcolor = c;
g->flags |= GDISP_FLG_RUNBYTE;
}
#endif
if ((g->flags & GDISP_FLG_ODDBYTE)) {
// Write the pair of pixels to the display
write_data3(g, ((PRIV->savecolor >> 4) & 0xFF),
(((PRIV->savecolor << 4) & 0xF0)|((c >> 8) & 0x0F)),
(c & 0xFF));
g->flags &= ~GDISP_FLG_ODDBYTE;
} else {
PRIV->savecolor = c;
g->flags |= GDISP_FLG_ODDBYTE;
}
}
LLDSPEC void gdisp_lld_write_stop(GDisplay *g) {
if ((g->flags & GDISP_FLG_ODDBYTE)) {
#if GDISP_GE8_BROKEN_CONTROLLER
/**
* We have a real problem here - we need to write a singular pixel
* Methods that are supposed to work...
* 1/ Write the pixel (2 bytes) and then send a NOP command. This doesn't work, the pixel doesn't get written
* and it is maintained in the latch where it causes problems for the next window.
* 2/ Just write a dummy extra pixel as stuff beyond the window gets discarded. This doesn't work as contrary to
* the documentation the buffer wraps and the first pixel gets overwritten.
* 3/ Put the controller in 16 bits per pixel Type B mode where each pixel is performed by writing two bytes. This
* also doesn't work as the controller refuses to enter Type B mode (it stays in Type A mode).
*
* These methods might work on some controllers - just not on the one of the broken versions.
*
* For these broken controllers:
* We know we can wrap to the first byte (just overprint it) if we are at the end of the stream area.
* If not, we need to create a one pixel by one pixel window to fix this - Uuch. Fortunately this should only happen if the
* user application uses the streaming calls and then terminates the stream early or after buffer wrap.
* Since this is such an unlikely situation we just don't handle it.
*/
write_data3(g, ((PRIV->savecolor >> 4) & 0xFF),
(((PRIV->savecolor << 4) & 0xF0)|((PRIV->firstcolor >> 8) & 0x0F)),
(PRIV->firstcolor & 0xFF));
#else
write_data2(g, ((PRIV->savecolor >> 4) & 0xFF), ((PRIV->savecolor << 4) & 0xF0));
write_index(g, NOP);
#endif
}
release_bus(g);
}
#endif
#if GDISP_HARDWARE_DRAWPIXEL
LLDSPEC void gdisp_lld_draw_pixel(GDisplay *g) {
uint16_t c;
c = gdispColor2Native(g->p.color);
acquire_bus(g);
set_viewport(g);
write_data3(g, 0, (c>>8) & 0x0F, c & 0xFF);
release_bus(g);
}
#endif
/* ---- Optional Routines ---- */
#if GDISP_HARDWARE_FILLS
LLDSPEC void gdisp_lld_fill_area(GDisplay *g) {
unsigned tuples;
uint16_t c;
tuples = (g->p.cx*g->p.cy+1)>>1; // With an odd sized area we over-print by one pixel.
// This extra pixel overwrites the first pixel (harmless as it is the same colour)
c = gdispColor2Native(g->p.color);
acquire_bus(g);
set_viewport(g);
while(tuples--)
write_data3(g, ((c >> 4) & 0xFF), (((c << 4) & 0xF0)|((c >> 8) & 0x0F)), (c & 0xFF));
release_bus(g);
}
#endif
#if GDISP_HARDWARE_BITFILLS
LLDSPEC void gdisp_lld_blit_area(GDisplay *g) {
coord_t lg, x, y;
uint16_t c1, c2;
unsigned tuples;
const pixel_t *buffer;
#if GDISP_PACKED_PIXELS
unsigned pnum, pstart;
const uint8_t *p;
#else
const pixel_t *p;
#endif
tuples = (g->p.cx * g->p.cy + 1)>>1;
buffer = (const pixel_t *)g->p.ptr;
/* Set up the data window to transfer */
acquire_bus(g);
set_viewport(g);
/* to suppress compiler warnings */
2013-10-26 12:59:52 +00:00
x = 0;
y = 0;
/*
* Due to the way the Nokia6610 handles a decrementing column or page,
* we have to make adjustments as to where it is actually drawing from in the bitmap.
* For example, for 90 degree rotation the column is decremented on each
* memory write. The controller always starts with column 0 and then decrements
* to column cx-1, cx-2 etc. We therefore have to write-out the last bitmap line first.
*/
switch(g->g.Orientation) {
default:
case GDISP_ROTATE_0: x = 0; y = 0; break;
case GDISP_ROTATE_90: x = g->p.cx-1; y = 0; break;
case GDISP_ROTATE_180: x = g->p.cx-1; y = g->p.cy-1; break;
case GDISP_ROTATE_270: x = 0; y = g->p.cy-1; break;
}
#if !GDISP_PACKED_PIXELS
// Although this controller uses packed pixels we support unpacked pixel
// formats in this blit by packing the data as we feed it to the controller.
lg = g->p.x2 - g->p.cx; // The buffer gap between lines
buffer += g->p.y1 * g->p.x2 + g->p.x1; // The buffer start position
p = buffer + g->p.x2*y + x; // Adjustment for controller craziness
while(tuples--) {
/* Get a pixel */
c1 = gdispColor2Native(*p++);
/* Check for line or buffer wrapping */
if (++x >= g->p.cx) {
x = 0;
p += lg;
if (++y >= g->p.cy) {
y = 0;
p = buffer;
}
}
/* Get the next pixel */
c2 = gdispColor2Native(*p++);
/* Check for line or buffer wrapping */
if (++x >= g->p.cx) {
x = 0;
p += lg;
if (++y >= g->p.cy) {
y = 0;
p = buffer;
}
}
/* Write the pair of pixels to the display */
write_data3(g, ((c1 >> 4) & 0xFF), (((c1 << 4) & 0xF0)|((c2 >> 8) & 0x0F)), (c2 & 0xFF));
}
#elif GDISP_PIXELFORMAT == GDISP_LLD_PIXELFORMAT
// Although this controller uses packed pixels, we may have to feed it into
// the controller with different packing to the source bitmap
// There are 2 pixels per 3 bytes
#if !GDISP_PACKED_LINES
srccx = (g->p.x2 + 1) & ~1;
#endif
pstart = g->p.y1 * g->p.x2 + g->p.x1; // The starting pixel number
buffer = (const pixel_t)(((const uint8_t *)buffer) + ((pstart>>1) * 3)); // The buffer start position
lg = ((g->p.x2-g->p.cx)>>1)*3; // The buffer gap between lines
pnum = pstart + g->p.x2*y + x; // Adjustment for controller craziness
p = ((const uint8_t *)buffer) + (((g->p.x2*y + x)>>1)*3); // Adjustment for controller craziness
while (tuples--) {
/* Get a pixel */
switch(pnum++ & 1) {
case 0: c1 = (((color_t)p[0]) << 4)|(((color_t)p[1])>>4); break;
case 1: c1 = (((color_t)p[1]&0x0F) << 8)|((color_t)p[1]); p += 3; break;
}
/* Check for line or buffer wrapping */
if (++x >= g->p.cx) {
x = 0;
p += lg;
pnum += g->p.x2 - g->p.cx;
if (++y >= g->p.cy) {
y = 0;
p = (const uint8_t *)buffer;
pnum = pstart;
}
}
/* Get the next pixel */
switch(pnum++ & 1) {
case 0: c2 = (((color_t)p[0]) << 4)|(((color_t)p[1])>>4); break;
case 1: c2 = (((color_t)p[1]&0x0F) << 8)|((color_t)p[1]); p += 3; break;
}
/* Check for line or buffer wrapping */
if (++x >= g->p.cx) {
x = 0;
p += lg;
pnum += g->p.x2 - g->p.cx;
if (++y >= g->p.cy) {
y = 0;
p = (const uint8_t *)buffer;
pnum = pstart;
}
}
/* Write the pair of pixels to the display */
write_data3(g, ((c1 >> 4) & 0xFF), (((c1 << 4) & 0xF0)|((c2 >> 8) & 0x0F)), (c2 & 0xFF));
}
#else
#error "Packed pixels is broken if you are not running native pixel format"
#endif
/* All done */
release_bus(g);
}
#endif
#if GDISP_NEED_CONTROL && GDISP_HARDWARE_CONTROL
LLDSPEC void gdisp_lld_control(GDisplay *g) {
/* The hardware is capable of supporting...
* GDISP_CONTROL_POWER - supported
* GDISP_CONTROL_ORIENTATION - supported
* GDISP_CONTROL_BACKLIGHT - supported
* GDISP_CONTROL_CONTRAST - supported
*/
switch(g->p.x) {
case GDISP_CONTROL_POWER:
if (g->g.Powermode == (powermode_t)g->p.ptr)
return;
acquire_bus(g);
switch((powermode_t)g->p.ptr) {
case powerOff:
set_backlight(g, 0); // Turn off the backlight
write_index(g, DISOFF); // Turn off the display
write_cmd1(g, PWRCTR, 0x00); // Power control - all off
write_index(g, SLPIN); // Sleep in
write_index(g, OSCOFF); // Internal oscillator off
break;
case powerOn:
write_index(g, OSCON); // Internal oscillator on
write_index(g, SLPOUT); // Sleep out
write_cmd1(g, PWRCTR, 0x0F); // Power control - reference voltage regulator on, circuit voltage follower on, BOOST ON
write_cmd2(g, VOLCTR, g->g.Contrast, 0x03); // Voltage control (contrast setting)
delayms(100); // Allow power supply to stabilise
write_index(g, DISON); // Turn on the display
write_index(g, PTLOUT); // Remove sleep window
set_backlight(g, g->g.Backlight); // Turn on the backlight
break;
case powerSleep:
write_index(g, OSCON); // Internal oscillator on
write_index(g, SLPOUT); // Sleep out
write_cmd1(g, PWRCTR, 0x0F); // Power control - reference voltage regulator on, circuit voltage follower on, BOOST ON
write_cmd2(g, VOLCTR, g->g.Contrast, 0x03); // Voltage control (contrast setting)
delayms(100); // Allow power supply to stabilise
write_index(g, DISON); // Turn on the display
write_cmd2(g, PTLIN, GDISP_SLEEP_POS/4, (GDISP_SLEEP_POS+GDISP_SLEEP_SIZE)/4); // Sleep Window
set_backlight(g, g->g.Backlight); // Turn on the backlight
break;
case powerDeepSleep:
write_index(g, OSCON); // Internal oscillator on
write_index(g, SLPOUT); // Sleep out
write_cmd1(g, PWRCTR, 0x0F); // Power control - reference voltage regulator on, circuit voltage follower on, BOOST ON
write_cmd2(g, VOLCTR, g->g.Contrast, 0x03); // Voltage control (contrast setting)
delayms(100); // Allow power supply to stabilise
write_index(g, DISON); // Turn on the display
write_cmd2(g, PTLIN, GDISP_SLEEP_POS/4, (GDISP_SLEEP_POS+GDISP_SLEEP_SIZE)/4); // Sleep Window
set_backlight(g, 0); // Turn off the backlight
break;
default:
release_bus(g);
return;
}
release_bus(g);
g->g.Powermode = (powermode_t)g->p.ptr;
return;
#if GDISP_NOKIA_ORIENTATION
case GDISP_CONTROL_ORIENTATION:
if (g->g.Orientation == (orientation_t)g->p.ptr)
return;
acquire_bus(g);
switch((orientation_t)g->p.ptr) {
case GDISP_ROTATE_0:
write_cmd3(g, DATCTL, 0x00, 0x00, 0x02); // P1: page normal, column normal, scan in column direction
g->g.Height = GDISP_SCREEN_HEIGHT;
g->g.Width = GDISP_SCREEN_WIDTH;
break;
case GDISP_ROTATE_90:
write_cmd3(g, DATCTL, 0x05, 0x00, 0x02); // P1: page reverse, column normal, scan in page direction
g->g.Height = GDISP_SCREEN_WIDTH;
g->g.Width = GDISP_SCREEN_HEIGHT;
break;
case GDISP_ROTATE_180:
write_cmd3(g, DATCTL, 0x03, 0x00, 0x02); // P1: page reverse, column reverse, scan in column direction
g->g.Height = GDISP_SCREEN_HEIGHT;
g->g.Width = GDISP_SCREEN_WIDTH;
break;
case GDISP_ROTATE_270:
write_cmd3(g, DATCTL, 0x06, 0x00, 0x02); // P1: page normal, column reverse, scan in page direction
g->g.Height = GDISP_SCREEN_WIDTH;
g->g.Width = GDISP_SCREEN_HEIGHT;
break;
default:
release_bus(g);
return;
}
release_bus(g);
g->g.Orientation = (orientation_t)g->p.ptr;
return;
#endif
case GDISP_CONTROL_BACKLIGHT:
if ((unsigned)g->p.ptr > 100) g->p.ptr = (void *)100;
set_backlight(g, (unsigned)g->p.ptr);
g->g.Backlight = (unsigned)g->p.ptr;
return;
case GDISP_CONTROL_CONTRAST:
if ((unsigned)g->p.ptr > 100) g->p.ptr = (void *)100;
acquire_bus(g);
write_cmd2(g, VOLCTR, 64*(unsigned)g->p.ptr/101, 0x03);
release_bus(g);
g->g.Contrast = (unsigned)g->p.ptr;
return;
}
}
#endif
#endif /* GFX_USE_GDISP */
/** @} */