Add SSD1848 driver by czhou

ugfx_release_2.6
inmarket 2016-04-25 14:57:36 +10:00
parent c7fca71070
commit 0a2e251391
4 changed files with 998 additions and 0 deletions

View File

@ -0,0 +1,53 @@
/*
* This file is subject to the terms of the GFX License. If a copy of
* the license was not distributed with this file, you can obtain one at:
*
* http://ugfx.org/license.html
*/
#ifndef _BOARD_SSD1848_H
#define _BOARD_SSD1848_H
static void init_board(GDisplay *g) {
(void) g;
}
static void post_init_board(GDisplay *g) {
(void) g;
}
static void setpin_reset(GDisplay *g, bool_t state) {
(void) g;
(void) state;
}
static void set_backlight(GDisplay *g, uint8_t percent) {
(void) g;
(void) percent;
}
static void acquire_bus(GDisplay *g) {
(void) g;
}
static void release_bus(GDisplay *g) {
(void) g;
}
static void spi_write_cmd(GDisplay *g, uint8_t cmd) {
(void) g;
(void) cmd;
}
static void spi_write_data_array(GDisplay *g, uint8_t* datas, size_t length) {
(void) g;
(void) datas;
(void) length;
}
static void spi_write_data(GDisplay *g, uint8_t data) {
(void) g;
(void) data;
}
#endif /* _BOARD_SSD1848_H */

View File

@ -0,0 +1,623 @@
/*
* This file is subject to the terms of the GFX License. If a copy of
* the license was not distributed with this file, you can obtain one at:
*
* http://ugfx.org/license.html
*/
#include "gfx.h"
#if GFX_USE_GDISP
#define GDISP_DRIVER_VMT GDISPVMT_SSD1848
#include "gdisp_lld_config.h"
#include "../../../src/gdisp/gdisp_driver.h"
typedef struct LCD_Parameters
{
uint8_t curXPtr;
uint8_t startXPtr; /* The area start bit position in the start column */
uint8_t endXPtr; /* The area end bit position in the end column */
uint8_t curCol;
uint8_t startCol; /* The area start column */
uint8_t endCol; /* The area end column */
uint8_t curYPtr;
} LCD_Parameters;
#include "board_SSD1848.h"
#include <string.h> /* for memset */
/*===========================================================================*/
/* Driver local definitions. */
/*===========================================================================*/
#ifndef GDISP_SCREEN_HEIGHT
#define GDISP_SCREEN_HEIGHT 130
#endif
#ifndef GDISP_SCREEN_WIDTH
#define GDISP_SCREEN_WIDTH 128
#endif
#ifndef GDISP_INITIAL_CONTRAST
#define GDISP_INITIAL_CONTRAST 80
#endif
#ifndef GDISP_INITIAL_BACKLIGHT
#define GDISP_INITIAL_BACKLIGHT 100
#endif
#ifdef SSD1848_PAGE_PREFIX
#define SSD1848_PAGE_WIDTH (GDISP_SCREEN_WIDTH + 1)
#define SSD1848_PAGE_OFFSET 1
#else
#define SSD1848_PAGE_WIDTH GDISP_SCREEN_WIDTH
#define SSD1848_PAGE_OFFSET 0
#endif
#define GDISP_FLG_NEEDFLUSH (GDISP_FLG_DRIVER << 0)
#include "SSD1848.h"
/*===========================================================================*/
/* Driver local functions. */
/*===========================================================================*/
/* Some common routines and macros */
#define PRM(g) ((LCD_Parameters *)g->priv)
#define RAM(g) ((uint8_t *)(PRM(g)+1))
#define write_cmd2(g, cmd1, cmd2) { spi_write_cmd (g, cmd1); spi_write_data (g, cmd2); }
#define write_cmd3(g, cmd1, cmd2, cmd3) { spi_write_cmd (g, cmd1); spi_write_data2 (g, cmd2, cmd3); }
#define xyaddr(x, y) (SSD1848_PAGE_OFFSET + (x) + ((y) >> 3) * SSD1848_PAGE_WIDTH)
#define xybit(y) (1 << ((y) & 7))
static void set_viewport (GDisplay* g)
{
switch (g->g.Orientation)
{
default:
case GDISP_ROTATE_0:
spi_write_cmd (g, SSD1848_HV_COLUMN_ADDRESS);
spi_write_data2 (g, (uint8_t) (g->p.x / 8), (uint8_t) ((g->p.x + g->p.cx - 1) / 8));
spi_write_cmd (g, SSD1848_HV_PAGE_ADDRESS);
spi_write_data2 (g, g->p.y, g->p.y + g->p.cy - 1);
spi_write_cmd (g, SSD1848_WRITE_DISP_DATA);
break;
case GDISP_ROTATE_90:
spi_write_cmd (g, SSD1848_HV_COLUMN_ADDRESS);
spi_write_data2 (g, g->p.y, g->p.y + g->p.cy - 1);
spi_write_cmd (g, SSD1848_HV_PAGE_ADDRESS);
spi_write_data2 (g, g->g.Width - g->p.x - g->p.cx, g->g.Width - 1 - g->p.x);
spi_write_cmd (g, SSD1848_WRITE_DISP_DATA);
break;
case GDISP_ROTATE_180:
spi_write_cmd (g, SSD1848_HV_COLUMN_ADDRESS);
spi_write_data2 (g, g->g.Width - g->p.x - g->p.cx, g->g.Width - 1 - g->p.x);
spi_write_cmd (g, SSD1848_HV_PAGE_ADDRESS);
spi_write_data2 (g, g->g.Height - g->p.y - g->p.cy, g->g.Height - 1 - g->p.y);
spi_write_cmd (g, SSD1848_WRITE_DISP_DATA);
break;
case GDISP_ROTATE_270:
spi_write_cmd (g, SSD1848_HV_COLUMN_ADDRESS);
spi_write_data2 (g, g->g.Height - g->p.y - g->p.cy, g->g.Height - 1 - g->p.y);
spi_write_cmd (g, SSD1848_HV_PAGE_ADDRESS);
spi_write_data2 (g, g->p.x, g->p.x + g->p.cx - 1);
spi_write_cmd (g, SSD1848_WRITE_DISP_DATA);
break;
}
}
/**
* As this controller can't update on a pixel boundary we need to maintain the
* the entire display surface in memory so that we can do the necessary bit
* operations. Fortunately it is a small display in monochrome.
* 128 * 128 / 8 = 2048 bytes.
*/
LLDSPEC bool_t gdisp_lld_init (GDisplay *g)
{
uint8_t temp [5] = { 0 };
/* The private area is the display surface. */
g->priv = gfxAlloc (sizeof(DisplayData) + GDISP_SCREEN_WIDTH / 8 * GDISP_SCREEN_HEIGHT);
if (!g->priv)
return FALSE;
memset (g->priv, 0, sizeof(DisplayData) + GDISP_SCREEN_WIDTH / 8 * GDISP_SCREEN_HEIGHT);
/* Initialise the board interface */
init_board (g);
/* Init LCD */
/* Hardware reset */
setpin_reset (g, FALSE);
gfxSleepMilliseconds (50);
setpin_reset (g, TRUE);
gfxSleepMilliseconds (50);
setpin_reset (g, FALSE);
acquire_bus (g);
gfxSleepMilliseconds (50);
spi_write_cmd (g, SSD1848_ENABLE_INTERNAL_CLOCK); /* 0xD1 */
spi_write_cmd (g, SSD1848_EXITSLEEP); /* 0x94 */
gfxSleepMilliseconds (20);
spi_write_cmd (g, SSD1848_SET_FRAME_FREQ_LINEINVE);
spi_write_data2 (g, 0x00, 0x00);
temp [0] = 0x00;
temp [1] = 0x0e;
temp [2] = 0x41;
spi_write_cmd (g, SSD1848_SET_BLACK_WHITE);
spi_write_data_array (g, temp, 3);
temp [0] = 0x00;
temp [1] = 0x00;
temp [2] = 0x00;
spi_write_cmd (g, SSD1848_DATA_OUTPUT_SCAN_DIR);
spi_write_data_array (g, temp, 3);
spi_write_cmd (g, SSD1848_SETSTARTLINE);
spi_write_data (g, 0x00);
spi_write_cmd (g, SSD1848_COM_OUTPUT_SCAN_DIR);
spi_write_data (g, 0x01);
spi_write_cmd (g, SSD1848_SETDISP_CTRL); /* 0xCA */
temp [0] = 0x00;
temp [1] = 0x20; /* 0x1F */
temp [2] = 0x00;
spi_write_data_array (g, temp, 3);
spi_write_cmd (g, SSD1848_SETPOWER_CTRL); /* 0x20 */
spi_write_data (g, 0x0F);
gfxSleepMilliseconds (150);
spi_write_cmd (g, SSD1848_SETCONTRAST); /* 0x81 */
spi_write_data2 (g, 0x28, 0x06);
spi_write_cmd (g, SSD1848_TEMP_COMPENSATION);
spi_write_data (g, 0x01);
spi_write_cmd (g, SSD1848_SET_BIASING_LOCK); /* 0xFB */
spi_write_data (g, 0x02);
spi_write_cmd (g, 0xF3);
temp [0] = 0xc4;
temp [1] = 0x15;
temp [2] = 0x00;
temp [3] = 0x80;
spi_write_data_array (g, temp, 4);
spi_write_cmd (g, SSD1848_SET_FRAME_FREQ_LINEINVE);
temp [0] = 0x40;
temp [1] = 0x04;
temp [2] = 0x10;
temp [3] = 0x01;
spi_write_data_array (g, temp, 4);
spi_write_cmd (g, SSD1848_DISPLAYON);
spi_write_cmd (g, SSD1848_DUAL_OPT_SET);
spi_write_data2 (g, 0x1F, 0x06);
release_bus (g);
/* Finish Init */
post_init_board (g);
/* Initialise the GDISP structure */
g->g.Width = GDISP_SCREEN_WIDTH;
g->g.Height = GDISP_SCREEN_HEIGHT;
g->g.Orientation = GDISP_ROTATE_0;
g->g.Powermode = powerOn;
g->g.Backlight = GDISP_INITIAL_BACKLIGHT;
g->g.Contrast = GDISP_INITIAL_CONTRAST;
return TRUE;
}
#if GDISP_HARDWARE_STREAM_WRITE
LLDSPEC void gdisp_lld_write_start (GDisplay *g)
{
acquire_bus (g);
set_viewport (g);
PRM(g)->curCol = PRM(g)->startCol = (uint8_t) (g->p.x / 8);
PRM(g)->endCol = (uint8_t) ((g->p.x + g->p.cx - 1) / 8);
PRM(g)->curXPtr = PRM(g)->startXPtr = (uint8_t) (g->p.x % 8);
PRM(g)->endXPtr = (uint8_t) ((g->p.x + g->p.cx - 1) % 8);
PRM(g)->curYPtr = g->p.y;
}
LLDSPEC void gdisp_lld_write_color (GDisplay *g)
{
uint8_t temp;
uint8_t a;
uint16_t y = PRM(g)->curYPtr;
uint16_t c = PRM(g)->curCol;
temp = RAM (g)[y * 16 + c];
if (gdispColor2Native (g->p.color))
{
temp |= 0x80 >> PRM(g)->curXPtr;
}
else
{
temp &= ~(0x80 >> PRM(g)->curXPtr);
}
RAM (g)[y * 16 + c] = temp;
PRM(g)->curXPtr++;
if (PRM(g)->curXPtr == 8)
{
spi_write_data (g, temp);
if (PRM(g)->curCol == PRM(g)->endCol)
{
PRM(g)->curYPtr++;
PRM(g)->curCol = PRM(g)->startCol;
PRM(g)->curXPtr = PRM(g)->startXPtr;
}
else
{
PRM(g)->curCol++;
PRM(g)->curXPtr = 0;
}
}
/* If hit the boundary, flush the byte */
else if ((PRM(g)->curCol == PRM(g)->endCol) &&
(PRM(g)->curXPtr == PRM(g)->endXPtr + 1))
{
spi_write_data (g, temp);
PRM(g)->curXPtr = PRM(g)->startXPtr;
PRM(g)->curCol = PRM(g)->startCol;
PRM(g)->curYPtr++;
}
}
LLDSPEC void gdisp_lld_write_stop (GDisplay *g)
{
release_bus (g);
}
#endif
#if GDISP_HARDWARE_FLUSH
LLDSPEC void gdisp_lld_flush (GDisplay *g)
{
uint8_t * ram;
unsigned pages;
/* Don't flush if we don't need it. */
if (!(g->flags & GDISP_FLG_NEEDFLUSH))
return;
ram = RAM (g);
pages = GDISP_SCREEN_WIDTH / 8;
acquire_bus (g);
spi_write_cmd (g, SSD1848_SETSTARTLINE | 0);
while (pages--)
{
spi_write_data_array (g, ram, SSD1848_PAGE_WIDTH);
ram += SSD1848_PAGE_WIDTH;
}
release_bus (g);
g->flags &= ~GDISP_FLG_NEEDFLUSH;
}
#endif
#if GDISP_HARDWARE_CLEARS
LLDSPEC void gdisp_lld_clear (GDisplay *g)
{
uint16_t area = GDISP_SCREEN_WIDTH / 8 * GDISP_SCREEN_HEIGHT;
if (gdispColor2Native (g->p.color))
{
memset (RAM (g), 0xFF, GDISP_SCREEN_WIDTH / 8 * GDISP_SCREEN_HEIGHT);
}
else
{
memset (RAM (g), 0, GDISP_SCREEN_WIDTH / 8 * GDISP_SCREEN_HEIGHT);
}
acquire_bus (g);
spi_write_cmd (g, SSD1848_HV_COLUMN_ADDRESS);
spi_write_data2 (g, 0, 15);
spi_write_cmd (g, SSD1848_HV_PAGE_ADDRESS);
spi_write_data2 (g, 0, 129);
spi_write_cmd (g, SSD1848_WRITE_DISP_DATA);
for (; area; area--)
{
spi_write_data (g, 0);
}
release_bus (g);
}
#endif
#if GDISP_HARDWARE_FILLS
LLDSPEC void gdisp_lld_fill_area (GDisplay *g)
{
coord_t scol, ecol, sx, ex;
coord_t y, col, x;
uint16_t area = (uint16_t) g->p.cx * g->p.cy;
uint8_t temp;
col = scol = (uint8_t) (g->p.x / 8);
ecol = (uint8_t) ((g->p.x + g->p.cx - 1) / 8);
x = sx = (uint8_t) (g->p.x % 8);
ex = (uint8_t) ((g->p.x + g->p.cx - 1) % 8);
y = g->p.y;
acquire_bus (g);
set_viewport (g);
for (; area; area--)
{
temp = RAM (g)[y * 16 + col];
if (gdispColor2Native (g->p.color))
{
temp |= (0x80 >> x);
}
else
{
temp &= ~(0x80 >> x);
}
RAM (g)[y * 16 + col] = temp;
if (++x == 8)
{
spi_write_data (g, temp);
if (col == ecol)
{
y++;
col = scol;
x = sx;
}
else
{
col++;
x = 0;
}
}
/* If hit the boundary, flush the byte */
else if ((col == ecol) && (x == ex + 1))
{
spi_write_data (g, temp);
x = sx;
col = scol;
y++;
}
}
release_bus (g);
}
#endif
#if GDISP_HARDWARE_DRAWPIXEL
LLDSPEC void gdisp_lld_draw_pixel (GDisplay *g)
{
coord_t x, y;
switch (g->g.Orientation)
{
default:
case GDISP_ROTATE_0:
x = g->p.x;
y = g->p.y;
break;
case GDISP_ROTATE_90:
x = g->p.y;
y = GDISP_SCREEN_HEIGHT - 1 - g->p.x;
break;
case GDISP_ROTATE_180:
x = GDISP_SCREEN_WIDTH - 1 - g->p.x;
y = GDISP_SCREEN_HEIGHT - 1 - g->p.y;
break;
case GDISP_ROTATE_270:
x = GDISP_SCREEN_WIDTH - 1 - g->p.y;
y = g->p.x;
break;
}
if (gdispColor2Native (g->p.color) != gdispColor2Native (Black))
RAM (g)[xyaddr (x, y)] |= xybit (y);
else
RAM (g)[xyaddr (x, y)] &= ~xybit(y);
g->flags |= GDISP_FLG_NEEDFLUSH;
}
#endif
#if GDISP_HARDWARE_PIXELREAD
LLDSPEC color_t gdisp_lld_get_pixel_color (GDisplay *g)
{
coord_t x, y;
switch (g->g.Orientation)
{
default:
case GDISP_ROTATE_0:
x = g->p.x;
y = g->p.y;
break;
case GDISP_ROTATE_90:
x = g->p.y;
y = GDISP_SCREEN_HEIGHT - 1 - g->p.x;
break;
case GDISP_ROTATE_180:
x = GDISP_SCREEN_WIDTH - 1 - g->p.x;
y = GDISP_SCREEN_HEIGHT - 1 - g->p.y;
break;
case GDISP_ROTATE_270:
x = GDISP_SCREEN_WIDTH - 1 - g->p.y;
y = g->p.x;
break;
}
return (RAM (g)[xyaddr (x, y)] & xybit (y)) ? White : Black;
}
#endif
#if GDISP_NEED_CONTROL && GDISP_HARDWARE_CONTROL
LLDSPEC void gdisp_lld_control (GDisplay *g)
{
switch (g->p.x)
{
case GDISP_CONTROL_POWER:
if (g->g.Powermode == (powermode_t) g->p.ptr)
return;
switch ((powermode_t) g->p.ptr)
{
case powerOff:
acquire_bus (g);
spi_write_cmd (g, SSD1848_SETCONTRAST);
spi_write_data2 (g, 0x00, 0x00); /* Drop the contrast & gain */
spi_write_cmd (g, SSD1848_DISPLAYOFF);
spi_write_cmd (g, SSD1848_ENTERSLEEP);
release_bus (g);
break;
case powerSleep:
case powerDeepSleep:
acquire_bus (g);
spi_write_cmd (g, SSD1848_ENTERSLEEP);
release_bus (g);
break;
case powerOn:
acquire_bus (g);
spi_write_cmd (g, SSD1848_EXITSLEEP); /* need this in case we were in 'normal' sleep mode */
gfxSleepMilliseconds (5);
spi_write_cmd (g, SSD1848_DISPLAYON);
release_bus (g);
break;
default:
return;
}
g->g.Powermode = (powermode_t) g->p.ptr;
return;
case GDISP_CONTROL_ORIENTATION:
if (g->g.Orientation == (orientation_t) g->p.ptr)
return;
switch ((orientation_t) g->p.ptr)
{
/* Rotation is handled by the drawing routines */
case GDISP_ROTATE_0:
case GDISP_ROTATE_180:
g->g.Height = GDISP_SCREEN_HEIGHT;
g->g.Width = GDISP_SCREEN_WIDTH;
break;
case GDISP_ROTATE_90:
case GDISP_ROTATE_270:
g->g.Height = GDISP_SCREEN_WIDTH;
g->g.Width = GDISP_SCREEN_HEIGHT;
break;
default:
return;
}
g->g.Orientation = (orientation_t) g->p.ptr;
return;
case GDISP_CONTROL_CONTRAST:
if ((unsigned) g->p.ptr > 100)
g->p.ptr = (void *) 100;
acquire_bus (g);
spi_write_cmd (g, SSD1848_SETCONTRAST);
spi_write_data (g, (((uint16_t) g->p.ptr) << 8) / 101);
release_bus (g);
g->g.Contrast = (uint8_t) g->p.ptr;
return;
/* Our own special controller code to inverse the display */
/* 0 = normal, 1 = inverse */
case GDISP_CONTROL_INVERSE:
acquire_bus (g);
spi_write_cmd (g, g->p.ptr ? SSD1848_INVERTDISPLAY : SSD1848_NORMALDISPLAY);
release_bus (g);
return;
}
}
#endif /* GDISP_NEED_CONTROL */
#if GDISP_HARDWARE_BITFILLS
LLDSPEC void gdisp_lld_blit_area (GDisplay *g)
{
coord_t scol, ecol, sx;
coord_t y, col;
uint16_t area;
uint8_t temp, temp2, i;
col = scol = (uint8_t) (g->p.x / 8);
ecol = (uint8_t) ((g->p.x + g->p.cx - 1) / 8);
sx = (uint8_t) (g->p.x % 8);
y = g->p.y;
area = (ecol - scol + 1) * (g->p.cy);
acquire_bus (g);
set_viewport (g);
/* Bitfill align with Column */
if (sx == 0)
{
for (; area; area--)
{
temp = RAM (g)[y * 16 + col] = *((uint8_t *) g->p.ptr)++;
spi_write_data (g, temp);
if (col == ecol)
{
y++;
col = scol;
}
else
{
col++;
}
}
}
else
{
/* Bitfil doesn't align with column */
for (; area; area--)
{
temp = RAM (g)[y * 16 + col];
if (col != ecol)
{
temp |= (*((uint8_t *) g->p.ptr) >> sx);
RAM (g)[y * 16 + col] = temp;
temp2 = RAM (g)[y * 16 + col + 1];
temp2 |= (*((uint8_t *) g->p.ptr) << (8-sx));
RAM (g)[y * 16 + col + 1] = temp2;
((uint8_t *) g->p.ptr)++;
}
spi_write_data (g, temp);
if (col == ecol)
{
y++;
col = scol;
}
else
{
col++;
}
}
}
release_bus (g);
}
#endif
#endif /* GFX_USE_GDISP */

View File

@ -0,0 +1,32 @@
/*
* This file is subject to the terms of the GFX License. If a copy of
* the license was not distributed with this file, you can obtain one at:
*
* http://ugfx.org/license.html
*/
#ifndef _GDISP_LLD_CONFIG_H
#define _GDISP_LLD_CONFIG_H
#if GFX_USE_GDISP
/*===========================================================================*/
/* Driver hardware support. */
/*===========================================================================*/
#define GDISP_HARDWARE_FLUSH TRUE /* This controller requires flushing */
#define GDISP_HARDWARE_CONTROL TRUE
#define GDISP_HARDWARE_FILLS TRUE
#define GDISP_HARDWARE_STREAM_WRITE TRUE
#define GDISP_HARDWARE_CLEARS TRUE
#define GDISP_HARDWARE_BITFILLS TRUE
#define GDISP_LLD_PIXELFORMAT GDISP_PIXELFORMAT_MONO
/* This controller supports a special gdispControl() to inverse the display. */
/* Pass a parameter of 1 for inverse and 0 for normal. */
#define GDISP_CONTROL_INVERSE (GDISP_CONTROL_LLD + 0)
#endif /* GFX_USE_GDISP */
#endif /* _GDISP_LLD_CONFIG_H */

View File

@ -0,0 +1,290 @@
/*
* This file is subject to the terms of the GPL License.
*/
#ifndef _SSD1848_H
#define _SSD1848_H
/*
* Set the start column address by X5X4X3X2X1X0
* Set the end column address by Y5Y4Y3Y2Y1Y0
* Column address = 00000000b (POR)
* Column address is in a range of 0~32 (0x00~0x20).
*/
#define SSD1848_HV_COLUMN_ADDRESS 0x15
/*
* Set the start page address by X7X6X5X4X3X2X1X0
* Set the end page address by Y7Y6Y5Y4Y3Y2Y1Y0
* Page address = 00000000b (POR)
* Page address is in a range of 0~129 (0x00~0x81).
*/
#define SSD1848_HV_PAGE_ADDRESS 0x75
/*
* X2 X1 X0 ROW0ROW64 ROW65ROW129
* 0 0 0 COM0 ->COM64 COM65-> COM129(POR)
* 0 0 1 COM0->COM64 COM129<-COM65
* 0 1 0 COM64<-COM0 COM65->COM129
* 0 1 1 COM64<-COM0 COM129<-COM65
*/
#define SSD1848_COM_OUTPUT_SCAN_DIR 0xBB
/*
* a) Normal or Reverse page/column/RAM access/scan
* directions
* P10 = 0: set page address to normal display (POR)
* P10 = 1: set page address to inverse display
* P11 = 0: set column address to normal rotation (POR)
* P11 = 1: set column address to inverse rotation
* P12 = 0: set scan direction to column scan(POR)
* P12 = 1: set scan direction to page scan
* P13 = 0: set normal scan direction (POR)
* P13 = 1: set inverse scan direction
*
* b) Gray-scale setting
* X = Light gray PWM count (POR 5 counts)
* Y = Dark gray PWM count (POR 10 counts)
* P22P21P20 = X -1 (POR 100)
* P25P24P23 = Y - X - 1 (POR 100)
* Remark: Y-X8
*
* # Remarks: The PWM count for White and Black are 0 and 15 respectively.
*
* P30 = 0: PWM (POR)
* P34 = 0:
* White | Light Gray | Dark Gray | Black
* 0% | 33% | 66% | 100%
*
* P34 = 1:
* White | Light Gray | Dark Gray | Black
* 0% | X/15 | Y/15 | 100%
*
* P30 = 1: FRC
* P31 = 0: 3-frame FRC (POR)
* White | Light Gray | Dark Gray | Black
* 0% | 33% | 66% | 100%
*
* P31 = 1: 4-frame FRC
* P33 P32 | White | Light Gray | Dark Gray | Black
* 00(POR) | 0% | 25% | 75% | 100%
* 01 | 0% | 50% | 75% | 100%
* 10 | 0% | 25% | 50% | 100%
* 11 | Reserved
*/
#define SSD1848_DATA_OUTPUT_SCAN_DIR 0xBC
/* @
* Driver duty selection
* Select driver duty from 1/16 to 1/128. As Y5Y4Y3Y2Y1Y0 is increased
* from 000011b to 011111b, the number of display lines, N is increased
* at the same rating. To specify the Y5Y4Y3Y2Y1Y0 = (N/4)-1 where 1/N
* is the driver duty.
*
* Y5Y4Y3Y2Y1Y0 = 100000b for 1/130 duty.
*/
#define SSD1848_SETDISP_CTRL 0xCA
/* @
* X0=0: turns off the reference voltage generator (POR)
* X0=1: turns on the reference voltage generator
* X1=0: turns off the internal regulator and voltage follower (POR)
* X1=1: turns on the internal regulator and voltage follower
*
* Select booster level
* X4 X3 X2 Boost level
* 0 0 0 4X
* 0 0 1 5X
* 0 1 0 6X (POR)
* 0 1 1 7X
*/
#define SSD1848_SETPOWER_CTRL 0x20
/*
* a) Select contrast level from 64 contrast steps Contrast increases
* as X5X4X3X2X1X0 is increased from 000000b to 111111b.
* X5X4X3X2X1X0 = 100000b (POR)
*
* b) The internal regulator gain (1+R2/R1) VOUT increases as Y2Y1Y0
* is increased from 000b to 111b.
*
* The factor, 1+R2/R1, is given by:
* Y2Y1Y0 = 000: 3.38 (POR)
* Y2Y1Y0 = 001: 4.41
* Y2Y1Y0 = 010: 5.44
* Y2Y1Y0 = 011: 6.47
* Y2Y1Y0 = 100: 7.50
* Y2Y1Y0 = 101: 8.52
* Y2Y1Y0 = 110: 9.55
* Y2Y1Y0 = 111: 10.58
*/
#define SSD1848_SETCONTRAST 0x81
/*
* X7X6X5X4X3X2X1X0 : End COM Address = 00000000b (POR)
*/
#define SSD1848_ENABLE_PARTIAL_DISP 0xA8
#define SSD1848_EXIT_PARTIAL_DISP 0xA9
#define SSD1848_DISPLAYOFF 0xAE
#define SSD1848_DISPLAYON 0xAF
#define SSD1848_EXITSLEEP 0x94
#define SSD1848_ENTERSLEEP 0x95
#define SSD1848_ENABLE_INTERNAL_CLOCK 0xD1
#define SSD1848_DISABLE_INTERNAL_CLOCK 0xD2
/*
* VOUT average temperature gradients
* X1 X0 Average Temperature
* Gradient [%/oC]
* 0 0 -0.01 (POR)
* 0 1 -0.06
*/
#define SSD1848_TEMP_COMPENSATION 0x82
/*
* Enter the "write display data mode" by executing
* the command 01011100b. The following byte is
* used to specify the data byte to be written to the
* GDDRAM directly.
* The D/C bit should be stated at logic "1" during the
* display data is written to the GDDRAM.
*/
#define SSD1848_WRITE_DISP_DATA 0x5C
/*
* Allow user to set bias from 1/ 4 to 1/13
* B3B2B1B0 Bias ratio
* 1 0 0 1 1/4 bias
* 1 0 0 0 1/5 bias
* 0 1 1 1 1/6 bias
* 0 1 1 0 1/7 bias
* 0 1 0 1 1/8 bias
* 0 1 0 0 1/9 bias
* 0 0 1 1 1/10 bias
* 0 0 1 0 1/11 bias
* 0 0 0 1 1/12 bias
* 0 0 0 0 1/13 bias (POR)
* L0 Lock and unlock Cmd
* 0 unlock (POR)
* 1 lock and no more cmd/data is written to driver
* The 2nd byte is sent as Cmd if L0 is set to 1
*/
#define SSD1848_SET_BIASING_LOCK 0xFB
/*
* This command uses to change the frame
* frequency; set the N-line inversion and N-line
* inversion mode
* X0 = 1 (POR) X0 = 0
* F4F3F2F1F0
* 00000 : 56.4 Hz (POR) 64Hz
* 00111 : +10.1% +11.8%
* 01000 : +10.7% +15.2%
* 01001 : +12.5% +15.2%
* 01010 : +14.1% +20.6%
* 01011 : +16.1% +20.6%
* 01100 : +17.4% +25.9%
* 01101 : +19.5% +25.9%
* 01110 : +21.4% +32.9%
* 01111 : +23.7% +32.9%
* 10000 : +24.6% +37.4%
* 10001 : +27.1% +37.4%
* 10010 : +29.2% +46.0%
* 10011 : +31.8% +46.0%
* 10100 : +33.6% +54.6%
* 10101 : +36.5% +54.6%
* 10110 : +39.0% +66.9%
* 10111 : +42.2% +66.9%
* 11000 : +43.2% +75.8%
* 11001 : +46.6% +75.8%
* 11010 : +49.7% +94.0%
*
* Remark: The frame frequency is typical value
* for 130mux and PWM mode.
* The second byte data N5N4N3N2N1N0 sets the nline
* inversion register from 2 to 64 lines to
* reduce display crosstalk. Register values from
* 000001b to 111111b are mapped to 2 lines to 64
* lines respectively. Value 00000b disables the Nline
* inversion. 010000 is the POR value. To
* avoid a fix polarity at some lines, it should be
* noted that the total number of mux should NOT
* be a multiple of the lines of inversion (n).
* N6
* 0 reset n-line counter per frame (POR)
* 1 will not reset n-line counter per frame
*/
#define SSD1848_SET_FRAME_FREQ_LINEINVE 0xF2
#define SSD1848_DUAL_OPT_SET 0xF6
#define SSD1848_SET_BLACK_WHITE 0xF7
#define SSD1848_OTP 0xF8
#define SSD1848_NORMALDISPLAY 0xA6
#define SSD1848_INVERTDISPLAY 0xA7
/*
* This command specifies 1st Com line function. Byte A specifies the first
* display line which the graphic start to display. At POR, the 1st Com line
* is set to 00000000b (0 lines).
*/
#define SSD1848_SETSTARTLINE 0x44
/* Scrolling #defines */
/*
* a) Top Block Address
* X7X6X5X4X3X2X1X0 is used to specify the row
* address at the top of the scrolling area.
* Top row address = 00000000b (POR)
*
* b) Bottom Block Address
* Y7Y6Y5Y4Y3Y2Y1Y0 is used to specify the row
* address at the bottom of the scrolling area.
* Bottom row address = 00000000b (POR)
*
* c) Number of specified Blocks
* The number of specified blocks = Number of (Top
* fixed area + Scroll area) blocks 1. If bottom scroll
* or whole screen scroll mode is chosen, the number
* of specified blocks is set to Z7Z6Z5Z4Z3Z2Z1Z0
* Number of specified blocks = 00000000b (POR)
*
* d) Area Scroll Mode
* There are four types of area scroll.
* P41 P40 Types of Area Scroll
* 0 0 Center Screen Scroll
* 0 1 Top Screen Scroll
* 1 0 Bottom Screen Scroll
* 1 1 Whole Screen Scroll
* Type of area scroll = Whole Screen Scroll (POR)
*/
#define SSD1848_SET_AREA_SCROLL 0xAA
/*
* X5X4X3X2X1X0 specify the start row address
* of area scrolling.
* Start block address = 00000000b (POR)
*/
#define SSD1848_SCROLL_START 0xAB
/*
* Enter the "read display data mode" by executing
* the command 01011101b. The next byte is a
* dummy data. The GDDRAM data will be read
* form the second byte. The GDDRAM column
* address pointer will be increased by one
* automatically after each 2-bytes data read.
*/
#define SSD1848_READ_DISP_DATA 0x5D
#endif /* _SSD1848_H */