Convert ED060SC4 to new driver format

ugfx_release_2.6
inmarket 2013-10-23 01:34:56 +10:00
parent c353b6e9b0
commit 5f17570ebc
8 changed files with 554 additions and 420 deletions

View File

@ -43,84 +43,100 @@
#define GPIOC_VPOS_CTRL 14 #define GPIOC_VPOS_CTRL 14
#define GPIOC_VNEG_CTRL 15 #define GPIOC_VNEG_CTRL 15
static inline void init_board(GDisplay *g) {
/* Set up IO pins for the panel connection. */ // As we are not using multiple displays we set g->board to NULL as we don't use it.
static inline void init_board(void) { g->board = 0;
/* Main SMPS power control, active low
* (open collector so that MOSFET gate can be pulled up to Vbat) */ switch(g->controllerdisplay) {
palWritePad(GPIOC, GPIOC_SMPS_CTRL, true); case 0: // Set up for Display 0
palSetPadMode(GPIOC, GPIOC_SMPS_CTRL, PAL_MODE_OUTPUT_OPENDRAIN); /* Main SMPS power control, active low
* (open collector so that MOSFET gate can be pulled up to Vbat) */
/* Power control for the positive & negative side */ palWritePad(GPIOC, GPIOC_SMPS_CTRL, true);
palWritePad(GPIOC, GPIOC_VPOS_CTRL, false); palSetPadMode(GPIOC, GPIOC_SMPS_CTRL, PAL_MODE_OUTPUT_OPENDRAIN);
palSetPadMode(GPIOC, GPIOC_VPOS_CTRL, PAL_MODE_OUTPUT_PUSHPULL);
palWritePad(GPIOC, GPIOC_VNEG_CTRL, false); /* Power control for the positive & negative side */
palSetPadMode(GPIOC, GPIOC_VNEG_CTRL, PAL_MODE_OUTPUT_PUSHPULL); palWritePad(GPIOC, GPIOC_VPOS_CTRL, false);
palSetPadMode(GPIOC, GPIOC_VPOS_CTRL, PAL_MODE_OUTPUT_PUSHPULL);
/* Main data bus */ palWritePad(GPIOC, GPIOC_VNEG_CTRL, false);
palWritePort(GPIOB, 0); palSetPadMode(GPIOC, GPIOC_VNEG_CTRL, PAL_MODE_OUTPUT_PUSHPULL);
palSetGroupMode(GPIOB, 0xFFFF, 0, PAL_MODE_OUTPUT_PUSHPULL);
/* Main data bus */
palWritePort(GPIOB, 0);
palSetGroupMode(GPIOB, 0xFFFF, 0, PAL_MODE_OUTPUT_PUSHPULL);
break;
}
} }
/* Delay for display waveforms. Should be an accurate microsecond delay. */ /* Delay for display waveforms. Should be an accurate microsecond delay. */
static void eink_delay(int us) static void eink_delay(int us) {
{
halPolledDelay(US2RTT(us)); halPolledDelay(US2RTT(us));
} }
/* Turn the E-ink panel Vdd supply (+3.3V) on or off. */ /* Turn the E-ink panel Vdd supply (+3.3V) on or off. */
static inline void setpower_vdd(bool_t on) { static inline void setpower_vdd(GDisplay *g, bool_t on) {
(void) g;
palWritePad(GPIOB, GPIOB_SMPS_CTRL, !on); palWritePad(GPIOB, GPIOB_SMPS_CTRL, !on);
palWritePad(GPIOA, GPIOA_EINK_VDD, on); palWritePad(GPIOA, GPIOA_EINK_VDD, on);
} }
/* Turn the E-ink panel negative supplies (-15V, -20V) on or off. */ /* Turn the E-ink panel negative supplies (-15V, -20V) on or off. */
static inline void setpower_vneg(bool_t on) { static inline void setpower_vneg(GDisplay *g, bool_t on) {
(void) g;
palWritePad(GPIOA, GPIOA_VNEG_CTRL, on); palWritePad(GPIOA, GPIOA_VNEG_CTRL, on);
} }
/* Turn the E-ink panel positive supplies (-15V, -20V) on or off. */ /* Turn the E-ink panel positive supplies (-15V, -20V) on or off. */
static inline void setpower_vpos(bool_t on) { static inline void setpower_vpos(GDisplay *g, bool_t on) {
(void) g;
palWritePad(GPIOA, GPIOA_VPOS_CTRL, on); palWritePad(GPIOA, GPIOA_VPOS_CTRL, on);
} }
/* Set the state of the LE (source driver Latch Enable) pin. */ /* Set the state of the LE (source driver Latch Enable) pin. */
static inline void setpin_le(bool_t on) { static inline void setpin_le(GDisplay *g, bool_t on) {
(void) g;
palWritePad(GPIOB, GPIOB_EINK_LE, on); palWritePad(GPIOB, GPIOB_EINK_LE, on);
} }
/* Set the state of the OE (source driver Output Enable) pin. */ /* Set the state of the OE (source driver Output Enable) pin. */
static inline void setpin_oe(bool_t on) { static inline void setpin_oe(GDisplay *g, bool_t on) {
(void) g;
palWritePad(GPIOB, GPIOB_EINK_OE, on); palWritePad(GPIOB, GPIOB_EINK_OE, on);
} }
/* Set the state of the CL (source driver Clock) pin. */ /* Set the state of the CL (source driver Clock) pin. */
static inline void setpin_cl(bool_t on) { static inline void setpin_cl(GDisplay *g, bool_t on) {
(void) g;
palWritePad(GPIOB, GPIOB_EINK_CL, on); palWritePad(GPIOB, GPIOB_EINK_CL, on);
} }
/* Set the state of the SPH (source driver Start Pulse Horizontal) pin. */ /* Set the state of the SPH (source driver Start Pulse Horizontal) pin. */
static inline void setpin_sph(bool_t on) { static inline void setpin_sph(GDisplay *g, bool_t on) {
(void) g;
palWritePad(GPIOB, GPIOB_EINK_SPH, on); palWritePad(GPIOB, GPIOB_EINK_SPH, on);
} }
/* Set the state of the D0-D7 (source driver Data) pins. */ /* Set the state of the D0-D7 (source driver Data) pins. */
static inline void setpins_data(uint8_t value) { static inline void setpins_data(GDisplay *g, uint8_t value) {
(void) g;
palWriteGroup(GPIOB, 0xFF, GPIOB_EINK_D0, value); palWriteGroup(GPIOB, 0xFF, GPIOB_EINK_D0, value);
} }
/* Set the state of the CKV (gate driver Clock Vertical) pin. */ /* Set the state of the CKV (gate driver Clock Vertical) pin. */
static inline void setpin_ckv(bool_t on) { static inline void setpin_ckv(GDisplay *g, bool_t on) {
(void) g;
palWritePad(GPIOB, GPIOB_EINK_CKV, on); palWritePad(GPIOB, GPIOB_EINK_CKV, on);
} }
/* Set the state of the GMODE (gate driver Gate Mode) pin. */ /* Set the state of the GMODE (gate driver Gate Mode) pin. */
static inline void setpin_gmode(bool_t on) { static inline void setpin_gmode(GDisplay *g, bool_t on) {
(void) g;
palWritePad(GPIOC, GPIOC_EINK_GMODE, on); palWritePad(GPIOC, GPIOC_EINK_GMODE, on);
} }
/* Set the state of the SPV (gate driver Start Pulse Vertical) pin. */ /* Set the state of the SPV (gate driver Start Pulse Vertical) pin. */
static inline void setpin_spv(bool_t on) { static inline void setpin_spv(GDisplay *g, bool_t on) {
(void) g;
palWritePad(GPIOB, GPIOB_EINK_SPV, on); palWritePad(GPIOB, GPIOB_EINK_SPV, on);
} }

View File

@ -0,0 +1,202 @@
/*
* This file is subject to the terms of the GFX License. If a copy of
* the license was not distributed with this file, you can obtain one at:
*
* http://ugfx.org/license.html
*/
/**
* @file drivers/gdisp/ST7565/board_ST7565_template.h
* @brief GDISP Graphic Driver subsystem board interface for the ST7565 display.
*
* @addtogroup GDISP
* @{
*/
#ifndef _GDISP_LLD_BOARD_H
#define _GDISP_LLD_BOARD_H
/**
* @brief Optional parameters that can be put in this file.
* @note The values listed below are the defaults.
*
* @note #define GDISP_SCREEN_HEIGHT 600
* @note #define GDISP_SCREEN_WIDTH 800
*
* @note Number of pixels per byte<br>
* #define EINK_PPB 4
*
* @note Delay for generating clock pulses.
* Unit is approximate clock cycles of the CPU (0 to 15).
* This should be atleast 50 ns.<br>
* #define EINK_CLOCKDELAY 0
*
* @note Width of one framebuffer block.
* Must be divisible by EINK_PPB and evenly divide GDISP_SCREEN_WIDTH.<br>
* #define EINK_BLOCKWIDTH 20
*
* @note
* @note Height of one framebuffer block.
* Must evenly divide GDISP_SCREEN_WIDTH.<br>
* #define EINK_BLOCKHEIGHT 20
*
* @note Number of block buffers to use for framebuffer emulation.<br>
* #define EINK_NUMBUFFERS 40
*
* @note Do a "blinking" clear, i.e. clear to opposite polarity first.
* This reduces the image persistence.<br>
* #define EINK_BLINKCLEAR TRUE
*
* @note Number of passes to use when clearing the display<br>
* #define EINK_CLEARCOUNT 10
*
* @note Number of passes to use when writing to the display<br>
* #define EINK_WRITECOUNT 4
*/
/**
* @brief Initialise the board for the display.
*
* @param[in] g The GDisplay structure
*
* @note Set the g->board member to whatever is appropriate. For multiple
* displays this might be a pointer to the appropriate register set.
*
* @notapi
*/
static inline void init_board(GDisplay *g) {
(void) g;
}
/**
* @brief Delay for display waveforms. Should be an accurate microsecond delay.
*
* @param[in] us The number of microseconds
*/
static void eink_delay(int us) {
(void) us;
}
/**
* @brief Turn the E-ink panel Vdd supply (+3.3V) on or off.
*
* @param[in] g The GDisplay structure
* @param[in] on On or off
*/
static inline void setpower_vdd(GDisplay *g, bool_t on) {
(void) g;
(void) on;
}
/**
* @brief Turn the E-ink panel negative supplies (-15V, -20V) on or off.
*
* @param[in] g The GDisplay structure
* @param[in] on On or off
*/
static inline void setpower_vneg(GDisplay *g, bool_t on) {
(void) g;
(void) on;
}
/**
* @brief Turn the E-ink panel positive supplies (-15V, -20V) on or off.
*
* @param[in] g The GDisplay structure
* @param[in] on On or off
*/
static inline void setpower_vpos(GDisplay *g, bool_t on) {
(void) g;
(void) on;
}
/**
* @brief Set the state of the LE (source driver Latch Enable) pin.
*
* @param[in] g The GDisplay structure
* @param[in] on On or off
*/
static inline void setpin_le(GDisplay *g, bool_t on) {
(void) g;
(void) on;
}
/**
* @brief Set the state of the OE (source driver Output Enable) pin.
*
* @param[in] g The GDisplay structure
* @param[in] on On or off
*/
static inline void setpin_oe(GDisplay *g, bool_t on) {
(void) g;
(void) on;
}
/**
* @brief Set the state of the CL (source driver Clock) pin.
*
* @param[in] g The GDisplay structure
* @param[in] on On or off
*/
static inline void setpin_cl(GDisplay *g, bool_t on) {
(void) g;
(void) on;
}
/**
* @brief Set the state of the SPH (source driver Start Pulse Horizontal) pin.
*
* @param[in] g The GDisplay structure
* @param[in] on On or off
*/
static inline void setpin_sph(GDisplay *g, bool_t on) {
(void) g;
(void) on;
}
/**
* @brief Set the state of the D0-D7 (source driver Data) pins.
*
* @param[in] g The GDisplay structure
* @param[in] value The byte to write
*/
static inline void setpins_data(GDisplay *g, uint8_t value) {
(void) g;
(void) value;
}
/**
* @brief Set the state of the CKV (gate driver Clock Vertical) pin.
*
* @param[in] g The GDisplay structure
* @param[in] on On or off
*/
static inline void setpin_ckv(GDisplay *g, bool_t on) {
(void) g;
(void) on;
}
/**
* @brief Set the state of the GMODE (gate driver Gate Mode) pin.
*
* @param[in] g The GDisplay structure
* @param[in] on On or off
*/
static inline void setpin_gmode(GDisplay *g, bool_t on) {
(void) g;
(void) on;
}
/**
* @brief Set the state of the SPV (gate driver Start Pulse Vertical) pin.
*
* @param[in] g The GDisplay structure
* @param[in] on On or off
*/
static inline void setpin_spv(GDisplay *g, bool_t on) {
(void) g;
(void) on;
}
#endif /* _GDISP_LLD_BOARD_H */
/** @} */

View File

@ -1,16 +0,0 @@
/*
* This file is subject to the terms of the GFX License. If a copy of
* the license was not distributed with this file, you can obtain one at:
*
* http://ugfx.org/license.html
*/
#ifndef _ED060SC4_H_
#define _ED060SC4_H_
#include "gfx.h"
/* Control command for flushing all data to display. */
#define GDISP_CONTROL_FLUSH (GDISP_CONTROL_LLD + 0)
#endif

View File

@ -5,30 +5,35 @@
* http://ugfx.org/license.html * http://ugfx.org/license.html
*/ */
/* Low-level E-ink panel driver routines for ED060SC4. */ /**
* @file drivers/gdisp/ED060SC4/gdisp_lld.c
* @brief GDISP Graphics Driver for the E-ink panel ED060SC4.
*/
#include "gfx.h" #include "gfx.h"
#include "ed060sc4.h"
#if GFX_USE_GDISP #if GFX_USE_GDISP
#include "gdisp/lld/emulation.c" #define GDISP_DRIVER_VMT GDISPVMT_ED060SC4
#include "../drivers/gdisp/ED060SC4/gdisp_lld_config.h"
#include "gdisp/lld/gdisp_lld.h"
/* ================================= #include "board_ED060SC4.h"
* Default configuration
* ================================= */ /*===========================================================================*/
/* Driver local definitions. */
/*===========================================================================*/
#ifndef GDISP_SCREEN_HEIGHT #ifndef GDISP_SCREEN_HEIGHT
# define GDISP_SCREEN_HEIGHT 600 #define GDISP_SCREEN_HEIGHT 600
#endif #endif
#ifndef GDISP_SCREEN_WIDTH #ifndef GDISP_SCREEN_WIDTH
# define GDISP_SCREEN_WIDTH 800 #define GDISP_SCREEN_WIDTH 800
#endif #endif
/* Number of pixels per byte */ /* Number of pixels per byte */
#ifndef EINK_PPB #ifndef EINK_PPB
# define EINK_PPB 4 #define EINK_PPB 4
#endif #endif
/* Delay for generating clock pulses. /* Delay for generating clock pulses.
@ -36,50 +41,50 @@
* This should be atleast 50 ns. * This should be atleast 50 ns.
*/ */
#ifndef EINK_CLOCKDELAY #ifndef EINK_CLOCKDELAY
# define EINK_CLOCKDELAY 0 #define EINK_CLOCKDELAY 0
#endif #endif
/* Width of one framebuffer block. /* Width of one framebuffer block.
* Must be divisible by EINK_PPB and evenly divide GDISP_SCREEN_WIDTH. */ * Must be divisible by EINK_PPB and evenly divide GDISP_SCREEN_WIDTH. */
#ifndef EINK_BLOCKWIDTH #ifndef EINK_BLOCKWIDTH
# define EINK_BLOCKWIDTH 20 #define EINK_BLOCKWIDTH 20
#endif #endif
/* Height of one framebuffer block. /* Height of one framebuffer block.
* Must evenly divide GDISP_SCREEN_WIDTH. */ * Must evenly divide GDISP_SCREEN_WIDTH. */
#ifndef EINK_BLOCKHEIGHT #ifndef EINK_BLOCKHEIGHT
# define EINK_BLOCKHEIGHT 20 #define EINK_BLOCKHEIGHT 20
#endif #endif
/* Number of block buffers to use for framebuffer emulation. */ /* Number of block buffers to use for framebuffer emulation. */
#ifndef EINK_NUMBUFFERS #ifndef EINK_NUMBUFFERS
# define EINK_NUMBUFFERS 40 #define EINK_NUMBUFFERS 40
#endif #endif
/* Do a "blinking" clear, i.e. clear to opposite polarity first. /* Do a "blinking" clear, i.e. clear to opposite polarity first.
* This reduces the image persistence. */ * This reduces the image persistence. */
#ifndef EINK_BLINKCLEAR #ifndef EINK_BLINKCLEAR
# define EINK_BLINKCLEAR TRUE #define EINK_BLINKCLEAR TRUE
#endif #endif
/* Number of passes to use when clearing the display */ /* Number of passes to use when clearing the display */
#ifndef EINK_CLEARCOUNT #ifndef EINK_CLEARCOUNT
# define EINK_CLEARCOUNT 10 #define EINK_CLEARCOUNT 10
#endif #endif
/* Number of passes to use when writing to the display */ /* Number of passes to use when writing to the display */
#ifndef EINK_WRITECOUNT #ifndef EINK_WRITECOUNT
# define EINK_WRITECOUNT 4 #define EINK_WRITECOUNT 4
#endif #endif
/* ==================================== /*===========================================================================*/
* Lower level driver functions /* Driver local functions. */
* ==================================== */ /*===========================================================================*/
#include "gdisp_lld_board.h" #define PRIV(g) ((drvPriv *)g->priv)
/** Delay between signal changes, to give time for IO pins to change state. */ /** Delay between signal changes, to give time for IO pins to change state. */
static inline void clockdelay() static inline void clockdelay(void)
{ {
#if EINK_CLOCKDELAY & 1 #if EINK_CLOCKDELAY & 1
asm("nop"); asm("nop");
@ -107,21 +112,21 @@ static inline void clockdelay()
} }
/** Fast vertical clock pulse for gate driver, used during initializations */ /** Fast vertical clock pulse for gate driver, used during initializations */
static void vclock_quick() static void vclock_quick(GDisplay *g)
{ {
setpin_ckv(TRUE); setpin_ckv(g, TRUE);
eink_delay(1); eink_delay(1);
setpin_ckv(FALSE); setpin_ckv(g, FALSE);
eink_delay(4); eink_delay(4);
} }
/** Horizontal clock pulse for clocking data into source driver */ /** Horizontal clock pulse for clocking data into source driver */
static void hclock() static void hclock(GDisplay *g)
{ {
clockdelay(); clockdelay();
setpin_cl(TRUE); setpin_cl(g, TRUE);
clockdelay(); clockdelay();
setpin_cl(FALSE); setpin_cl(g, FALSE);
} }
/** Start a new vertical gate driver scan from top. /** Start a new vertical gate driver scan from top.
@ -129,156 +134,156 @@ static void hclock()
* so you should always scan through the whole display before * so you should always scan through the whole display before
* starting a new scan. * starting a new scan.
*/ */
static void vscan_start() static void vscan_start(GDisplay *g)
{ {
setpin_gmode(TRUE); setpin_gmode(g, TRUE);
vclock_quick(); vclock_quick(g);
setpin_spv(FALSE); setpin_spv(g, FALSE);
vclock_quick(); vclock_quick(g);
setpin_spv(TRUE); setpin_spv(g, TRUE);
vclock_quick(); vclock_quick(g);
} }
/** Waveform for strobing a row of data onto the display. /** Waveform for strobing a row of data onto the display.
* Attempts to minimize the leaking of color to other rows by having * Attempts to minimize the leaking of color to other rows by having
* a long idle period after a medium-length strobe period. * a long idle period after a medium-length strobe period.
*/ */
static void vscan_write() static void vscan_write(GDisplay *g)
{ {
setpin_ckv(TRUE); setpin_ckv(g, TRUE);
setpin_oe(TRUE); setpin_oe(g, TRUE);
eink_delay(5); eink_delay(5);
setpin_oe(FALSE); setpin_oe(g, FALSE);
setpin_ckv(FALSE); setpin_ckv(g, FALSE);
eink_delay(200); eink_delay(200);
} }
/** Waveform used when clearing the display. Strobes a row of data to the /** Waveform used when clearing the display. Strobes a row of data to the
* screen, but does not mind some of it leaking to other rows. * screen, but does not mind some of it leaking to other rows.
*/ */
static void vscan_bulkwrite() static void vscan_bulkwrite(GDisplay *g)
{ {
setpin_ckv(TRUE); setpin_ckv(g, TRUE);
eink_delay(20); eink_delay(20);
setpin_ckv(FALSE); setpin_ckv(g, FALSE);
eink_delay(200); eink_delay(200);
} }
/** Waveform for skipping a vertical row without writing anything. /** Waveform for skipping a vertical row without writing anything.
* Attempts to minimize the amount of change in any row. * Attempts to minimize the amount of change in any row.
*/ */
static void vscan_skip() static void vscan_skip(GDisplay *g)
{ {
setpin_ckv(TRUE); setpin_ckv(g, TRUE);
eink_delay(1); eink_delay(1);
setpin_ckv(FALSE); setpin_ckv(g, FALSE);
eink_delay(100); eink_delay(100);
} }
/** Stop the vertical scan. The significance of this escapes me, but it seems /** Stop the vertical scan. The significance of this escapes me, but it seems
* necessary or the next vertical scan may be corrupted. * necessary or the next vertical scan may be corrupted.
*/ */
static void vscan_stop() static void vscan_stop(GDisplay *g)
{ {
setpin_gmode(FALSE); setpin_gmode(g, FALSE);
vclock_quick(); vclock_quick(g);
vclock_quick(); vclock_quick(g);
vclock_quick(); vclock_quick(g);
vclock_quick(); vclock_quick(g);
vclock_quick(); vclock_quick(g);
} }
/** Start updating the source driver data (from left to right). */ /** Start updating the source driver data (from left to right). */
static void hscan_start() static void hscan_start(GDisplay *g)
{ {
/* Disable latching and output enable while we are modifying the row. */ /* Disable latching and output enable while we are modifying the row. */
setpin_le(FALSE); setpin_le(g, FALSE);
setpin_oe(FALSE); setpin_oe(g, FALSE);
/* The start pulse should remain low for the duration of the row. */ /* The start pulse should remain low for the duration of the row. */
setpin_sph(FALSE); setpin_sph(g, FALSE);
} }
/** Write data to the horizontal row. */ /** Write data to the horizontal row. */
static void hscan_write(const uint8_t *data, int count) static void hscan_write(GDisplay *g, const uint8_t *data, int count)
{ {
while (count--) while (count--)
{ {
/* Set the next byte on the data pins */ /* Set the next byte on the data pins */
setpins_data(*data++); setpins_data(g, *data++);
/* Give a clock pulse to the shift register */ /* Give a clock pulse to the shift register */
hclock(); hclock(g);
} }
} }
/** Finish and transfer the row to the source drivers. /** Finish and transfer the row to the source drivers.
* Does not set the output enable, so the drivers are not yet active. */ * Does not set the output enable, so the drivers are not yet active. */
static void hscan_stop() static void hscan_stop(GDisplay *g)
{ {
/* End the scan */ /* End the scan */
setpin_sph(TRUE); setpin_sph(g, TRUE);
hclock(); hclock(g);
/* Latch the new data */ /* Latch the new data */
setpin_le(TRUE); setpin_le(g, TRUE);
clockdelay(); clockdelay();
setpin_le(FALSE); setpin_le(g, FALSE);
} }
/** Turn on the power to the E-Ink panel, observing proper power sequencing. */ /** Turn on the power to the E-Ink panel, observing proper power sequencing. */
static void power_on() static void power_on(GDisplay *g)
{ {
unsigned i; unsigned i;
/* First the digital power supply and signal levels. */ /* First the digital power supply and signal levels. */
setpower_vdd(TRUE); setpower_vdd(g, TRUE);
setpin_le(FALSE); setpin_le(g, FALSE);
setpin_oe(FALSE); setpin_oe(g, FALSE);
setpin_cl(FALSE); setpin_cl(g, FALSE);
setpin_sph(TRUE); setpin_sph(g, TRUE);
setpins_data(0); setpins_data(g, 0);
setpin_ckv(FALSE); setpin_ckv(g, FALSE);
setpin_gmode(FALSE); setpin_gmode(g, FALSE);
setpin_spv(TRUE); setpin_spv(g, TRUE);
/* Min. 100 microsecond delay after digital supply */ /* Min. 100 microsecond delay after digital supply */
gfxSleepMicroseconds(100); gfxSleepMicroseconds(100);
/* Then negative voltages and min. 1000 microsecond delay. */ /* Then negative voltages and min. 1000 microsecond delay. */
setpower_vneg(TRUE); setpower_vneg(g, TRUE);
gfxSleepMicroseconds(1000); gfxSleepMicroseconds(1000);
/* Finally the positive voltages. */ /* Finally the positive voltages. */
setpower_vpos(TRUE); setpower_vpos(g, TRUE);
/* Clear the vscan shift register */ /* Clear the vscan shift register */
vscan_start(); vscan_start(g);
for (i = 0; i < GDISP_SCREEN_HEIGHT; i++) for (i = 0; i < GDISP_SCREEN_HEIGHT; i++)
vclock_quick(); vclock_quick(g);
vscan_stop(); vscan_stop(g);
} }
/** Turn off the power, observing proper power sequencing. */ /** Turn off the power, observing proper power sequencing. */
static void power_off() static void power_off(GDisplay *g)
{ {
/* First the high voltages */ /* First the high voltages */
setpower_vpos(FALSE); setpower_vpos(g, FALSE);
setpower_vneg(FALSE); setpower_vneg(g, FALSE);
/* Wait for any capacitors to drain */ /* Wait for any capacitors to drain */
gfxSleepMilliseconds(100); gfxSleepMilliseconds(100);
/* Then put all signals and digital supply to ground. */ /* Then put all signals and digital supply to ground. */
setpin_le(FALSE); setpin_le(g, FALSE);
setpin_oe(FALSE); setpin_oe(g, FALSE);
setpin_cl(FALSE); setpin_cl(g, FALSE);
setpin_sph(FALSE); setpin_sph(g, FALSE);
setpins_data(0); setpins_data(g, 0);
setpin_ckv(FALSE); setpin_ckv(g, FALSE);
setpin_gmode(FALSE); setpin_gmode(g, FALSE);
setpin_spv(FALSE); setpin_spv(g, FALSE);
setpower_vdd(FALSE); setpower_vdd(g, FALSE);
} }
/* ==================================== /* ====================================
@ -286,56 +291,58 @@ static void power_off()
* ==================================== */ * ==================================== */
#if EINK_PPB == 4 #if EINK_PPB == 4
#define PIXELMASK 3 #define PIXELMASK 3
#define PIXEL_WHITE 2 #define PIXEL_WHITE 2
#define PIXEL_BLACK 1 #define PIXEL_BLACK 1
#define BYTE_WHITE 0xAA #define BYTE_WHITE 0xAA
#define BYTE_BLACK 0x55 #define BYTE_BLACK 0x55
#else #else
#error Unsupported EINK_PPB value. #error Unsupported EINK_PPB value.
#endif #endif
#if GDISP_SCREEN_HEIGHT % EINK_BLOCKHEIGHT != 0 #if GDISP_SCREEN_HEIGHT % EINK_BLOCKHEIGHT != 0
#error GDISP_SCREEN_HEIGHT must be evenly divisible by EINK_BLOCKHEIGHT #error GDISP_SCREEN_HEIGHT must be evenly divisible by EINK_BLOCKHEIGHT
#endif #endif
#if GDISP_SCREEN_WIDTH % EINK_BLOCKWIDTH != 0 #if GDISP_SCREEN_WIDTH % EINK_BLOCKWIDTH != 0
#error GDISP_SCREEN_WIDTH must be evenly divisible by EINK_BLOCKWIDTH #error GDISP_SCREEN_WIDTH must be evenly divisible by EINK_BLOCKWIDTH
#endif #endif
#if EINK_BLOCKWIDTH % EINK_PPB != 0 #if EINK_BLOCKWIDTH % EINK_PPB != 0
#error EINK_BLOCKWIDTH must be evenly divisible by EINK_PPB #error EINK_BLOCKWIDTH must be evenly divisible by EINK_PPB
#endif #endif
#if EINK_NUMBUFFERS > 254 #if EINK_NUMBUFFERS > 254
#error EINK_NUMBUFFERS must be at most 254. #error EINK_NUMBUFFERS must be at most 254.
#endif #endif
#define BLOCKS_Y (GDISP_SCREEN_HEIGHT / EINK_BLOCKHEIGHT) #define BLOCKS_Y (GDISP_SCREEN_HEIGHT / EINK_BLOCKHEIGHT)
#define BLOCKS_X (GDISP_SCREEN_WIDTH / EINK_BLOCKWIDTH) #define BLOCKS_X (GDISP_SCREEN_WIDTH / EINK_BLOCKWIDTH)
#define WIDTH_BYTES (EINK_BLOCKWIDTH / EINK_PPB) #define WIDTH_BYTES (EINK_BLOCKWIDTH / EINK_PPB)
/* Buffers that store the data for a small area of the display. */ /* Buffers that store the data for a small area of the display. */
typedef struct { typedef struct {
uint8_t data[EINK_BLOCKHEIGHT][WIDTH_BYTES]; uint8_t data[EINK_BLOCKHEIGHT][WIDTH_BYTES];
} block_t; } block_t;
static uint8_t g_next_block; /* Index of the next free block buffer. */ typedef struct drvPriv {
static block_t g_blocks[EINK_NUMBUFFERS]; uint8_t g_next_block; /* Index of the next free block buffer. */
block_t g_blocks[EINK_NUMBUFFERS];
/* Map that stores the buffers associated to each area of the display. /* Map that stores the buffers associated to each area of the display.
* Value of 0 means that the block is not allocated. * Value of 0 means that the block is not allocated.
* Other values are the index in g_blocks + 1. * Other values are the index in g_blocks + 1.
*/ */
static uint8_t g_blockmap[BLOCKS_Y][BLOCKS_X]; uint8_t g_blockmap[BLOCKS_Y][BLOCKS_X];
} drvPriv;
/** Check if the row contains any allocated blocks. */ /** Check if the row contains any allocated blocks. */
static bool_t blocks_on_row(unsigned by) static bool_t blocks_on_row(GDisplay *g, unsigned by)
{ {
unsigned bx; unsigned bx;
for (bx = 0; bx < BLOCKS_X; bx++) for (bx = 0; bx < BLOCKS_X; bx++)
{ {
if (g_blockmap[by][bx] != 0) if (PRIV(g)->g_blockmap[by][bx] != 0)
{ {
return TRUE; return TRUE;
} }
@ -344,79 +351,47 @@ static bool_t blocks_on_row(unsigned by)
} }
/** Write out a block row. */ /** Write out a block row. */
static void write_block_row(unsigned by) static void write_block_row(GDisplay *g, unsigned by)
{ {
unsigned bx, dy, dx; unsigned bx, dy, dx;
for (dy = 0; dy < EINK_BLOCKHEIGHT; dy++) for (dy = 0; dy < EINK_BLOCKHEIGHT; dy++)
{ {
hscan_start(); hscan_start(g);
for (bx = 0; bx < BLOCKS_X; bx++) for (bx = 0; bx < BLOCKS_X; bx++)
{ {
if (g_blockmap[by][bx] == 0) if (PRIV(g)->g_blockmap[by][bx] == 0)
{ {
for (dx = 0; dx < WIDTH_BYTES; dx++) for (dx = 0; dx < WIDTH_BYTES; dx++)
{ {
const uint8_t dummy = 0; const uint8_t dummy = 0;
hscan_write(&dummy, 1); hscan_write(g, &dummy, 1);
} }
} }
else else
{ {
block_t *block = &g_blocks[g_blockmap[by][bx] - 1]; block_t *block = &PRIV(g)->g_blocks[PRIV(g)->g_blockmap[by][bx] - 1];
hscan_write(&block->data[dy][0], WIDTH_BYTES); hscan_write(g, &block->data[dy][0], WIDTH_BYTES);
} }
} }
hscan_stop(); hscan_stop(g);
vscan_write(); vscan_write(g);
} }
} }
/** Clear the block map, i.e. deallocate all blocks */ /** Clear the block map, i.e. deallocate all blocks */
static void clear_block_map() static void clear_block_map(GDisplay *g)
{ {
unsigned bx, by; unsigned bx, by;
for (by = 0; by < BLOCKS_Y; by++) for (by = 0; by < BLOCKS_Y; by++)
{ {
for (bx = 0; bx < BLOCKS_X; bx++) for (bx = 0; bx < BLOCKS_X; bx++)
{ {
g_blockmap[by][bx] = 0; PRIV(g)->g_blockmap[by][bx] = 0;
} }
} }
g_next_block = 0; PRIV(g)->g_next_block = 0;
}
/** Flush all the buffered rows to display. */
static void flush_buffers()
{
unsigned by, dy, i;
for (i = 0; i < EINK_WRITECOUNT; i++)
{
vscan_start();
for (by = 0; by < BLOCKS_Y; by++)
{
if (!blocks_on_row(by))
{
/* Skip the whole row of blocks. */
for (dy = 0; dy < EINK_BLOCKHEIGHT; dy++)
{
vscan_skip();
}
}
else
{
/* Write out the blocks. */
write_block_row(by);
}
}
vscan_stop();
}
clear_block_map();
} }
/** Initialize a newly allocated block. */ /** Initialize a newly allocated block. */
@ -434,173 +409,217 @@ static void zero_block(block_t *block)
/** Allocate a buffer /** Allocate a buffer
* Automatically flushes if all buffers are full. */ * Automatically flushes if all buffers are full. */
static block_t *alloc_buffer(unsigned bx, unsigned by) static block_t *alloc_buffer(GDisplay *g, unsigned bx, unsigned by)
{ {
block_t *result; block_t *result;
if (g_blockmap[by][bx] == 0) drvPriv *priv;
priv = PRIV(g);
if (priv->g_blockmap[by][bx] == 0)
{ {
if (g_next_block >= EINK_NUMBUFFERS) if (priv->g_next_block >= EINK_NUMBUFFERS)
{ gdisp_lld_flush(g);
flush_buffers();
}
result = &g_blocks[g_next_block]; result = &priv->g_blocks[priv->g_next_block];
g_blockmap[by][bx] = g_next_block + 1; priv->g_blockmap[by][bx] = priv->g_next_block + 1;
g_next_block++; priv->g_next_block++;
zero_block(result); zero_block(result);
return result; return result;
} }
else else
{ {
result = &g_blocks[g_blockmap[by][bx] - 1]; result = &priv->g_blocks[priv->g_blockmap[by][bx] - 1];
return result; return result;
} }
} }
/* =============================== /*===========================================================================*/
* Public functions /* Driver exported functions. */
* =============================== */ /*===========================================================================*/
bool_t gdisp_lld_init(void) LLDSPEC bool_t gdisp_lld_init(GDisplay *g) {
{ g->priv = gfxAlloc(sizeof(drvPriv));
init_board();
init_board(g);
/* Make sure that all the pins are in "off" state. /* Make sure that all the pins are in "off" state.
* Having any pin high could cause voltage leaking to the * Having any pin high could cause voltage leaking to the
* display, which in turn causes the image to leak slowly away. * display, which in turn causes the image to leak slowly away.
*/ */
power_off(); power_off(g);
clear_block_map(); clear_block_map(g);
/* Initialize the global GDISP structure */
GDISP.Width = GDISP_SCREEN_WIDTH;
GDISP.Height = GDISP_SCREEN_HEIGHT;
GDISP.Orientation = GDISP_ROTATE_0;
GDISP.Powermode = powerOff;
GDISP.Backlight = 0;
GDISP.Contrast = 0;
#if GDISP_NEED_VALIDATION || GDISP_NEED_CLIP
GDISP.clipx0 = 0;
GDISP.clipy0 = 0;
GDISP.clipx1 = GDISP.Width;
GDISP.clipy1 = GDISP.Height;
#endif
/* Initialise the GDISP structure */
g->g.Width = GDISP_SCREEN_WIDTH;
g->g.Height = GDISP_SCREEN_HEIGHT;
g->g.Orientation = GDISP_ROTATE_0;
g->g.Powermode = powerOn;
g->g.Backlight = 100;
g->g.Contrast = 100;
return TRUE; return TRUE;
} }
void gdisp_lld_draw_pixel(coord_t x, coord_t y, color_t color) #if GDISP_HARDWARE_FLUSH
{ LLDSPEC void gdisp_lld_flush(GDisplay *g) {
block_t *block; unsigned by, dy, i;
uint8_t byte;
unsigned bx, by, dx, dy;
uint8_t bitpos;
bx = x / EINK_BLOCKWIDTH;
by = y / EINK_BLOCKHEIGHT;
dx = x % EINK_BLOCKWIDTH;
dy = y % EINK_BLOCKHEIGHT;
if (bx < 0 || bx >= BLOCKS_X || by < 0 || by >= BLOCKS_Y)
return;
block = alloc_buffer(bx, by);
bitpos = (6 - 2 * (dx % EINK_PPB));
byte = block->data[dy][dx / EINK_PPB];
byte &= ~(PIXELMASK << bitpos);
if (color)
{
byte |= PIXEL_WHITE << bitpos;
}
else
{
byte |= PIXEL_BLACK << bitpos;
}
block->data[dy][dx / EINK_PPB] = byte;
}
#if !GDISP_NEED_CONTROL for (i = 0; i < EINK_WRITECOUNT; i++) {
#error You must enable GDISP_NEED_CONTROL for the E-Ink driver. vscan_start(g);
for (by = 0; by < BLOCKS_Y; by++) {
if (!blocks_on_row(g, by)) {
/* Skip the whole row of blocks. */
for (dy = 0; dy < EINK_BLOCKHEIGHT; dy++)
vscan_skip(g);
} else {
/* Write out the blocks. */
write_block_row(g, by);
}
}
vscan_stop(g);
}
clear_block_map(g);
}
#endif #endif
void gdisp_lld_control(unsigned what, void *value) { #if GDISP_HARDWARE_DRAWPIXEL
gdisp_powermode_t newmode; void gdisp_lld_draw_pixel(GDisplay *g) {
block_t *block;
switch(what) uint8_t byte;
{ unsigned bx, by, dx, dy;
case GDISP_CONTROL_POWER: uint8_t bitpos;
newmode = (gdisp_powermode_t)value;
switch(g->g.Orientation) {
if (GDISP.Powermode == newmode) case GDISP_ROTATE_0:
return; bx = g->p.x / EINK_BLOCKWIDTH;
dx = g->p.x % EINK_BLOCKWIDTH;
if (newmode == powerOn) by = g->p.y / EINK_BLOCKHEIGHT;
{ dy = g->p.y % EINK_BLOCKHEIGHT;
power_on();
}
else
{
flush_buffers();
power_off();
}
GDISP.Powermode = newmode;
break; break;
case GDISP_ROTATE_90:
case GDISP_CONTROL_FLUSH: bx = g->p.y / EINK_BLOCKWIDTH;
flush_buffers(); dx = g->p.y % EINK_BLOCKWIDTH;
by = (GDISP_SCREEN_HEIGHT-1 - g->p.x) / EINK_BLOCKHEIGHT;
dy = (GDISP_SCREEN_HEIGHT-1 - g->p.x) % EINK_BLOCKHEIGHT;
break; break;
case GDISP_ROTATE_180:
bx = (GDISP_SCREEN_WIDTH-1 - g->p.x) / EINK_BLOCKWIDTH;
dx = (GDISP_SCREEN_WIDTH-1 - g->p.x) % EINK_BLOCKWIDTH;
by = (GDISP_SCREEN_HEIGHT-1 - g->p.y) / EINK_BLOCKHEIGHT;
dy = (GDISP_SCREEN_HEIGHT-1 - g->p.y) % EINK_BLOCKHEIGHT;
break;
case GDISP_ROTATE_270:
bx = (GDISP_SCREEN_WIDTH-1 - g->p.y) / EINK_BLOCKWIDTH;
dx = (GDISP_SCREEN_WIDTH-1 - g->p.y) % EINK_BLOCKWIDTH;
by = g->p.x / EINK_BLOCKHEIGHT;
dy = g->p.x % EINK_BLOCKHEIGHT;
break;
}
block = alloc_buffer(g, bx, by);
bitpos = (6 - 2 * (dx % EINK_PPB));
byte = block->data[dy][dx / EINK_PPB];
byte &= ~(PIXELMASK << bitpos);
if (g->p.color != Black)
byte |= PIXEL_WHITE << bitpos;
else
byte |= PIXEL_BLACK << bitpos;
block->data[dy][dx / EINK_PPB] = byte;
} }
} #endif
#if GDISP_NEED_CONTROL && GDISP_HARDWARE_CONTROL
LLDSPEC void gdisp_lld_control(GDisplay *g) {
switch(g->p.x) {
case GDISP_CONTROL_POWER:
if (g->g.Powermode == (powermode_t)g->p.ptr)
return;
switch((powermode_t)g->p.ptr) {
case powerOff:
case powerSleep:
case powerDeepSleep:
gdisp_lld_flush(g);
power_off(g);
break;
case powerOn:
power_on(g);
break;
default:
return;
}
g->g.Powermode = (powermode_t)g->p.ptr;
return;
case GDISP_CONTROL_ORIENTATION:
if (g->g.Orientation == (orientation_t)g->p.ptr)
return;
switch((orientation_t)g->p.ptr) {
case GDISP_ROTATE_0:
case GDISP_ROTATE_180:
g->g.Height = GDISP_SCREEN_HEIGHT;
g->g.Width = GDISP_SCREEN_WIDTH;
break;
case GDISP_ROTATE_90:
case GDISP_ROTATE_270:
g->g.Height = GDISP_SCREEN_WIDTH;
g->g.Width = GDISP_SCREEN_HEIGHT;
break;
default:
return;
}
g->g.Orientation = (orientation_t)g->p.ptr;
return;
default:
return;
}
}
#endif
/* =============================== /* ===============================
* Accelerated routines * Accelerated routines
* =============================== */ * =============================== */
#if GDISP_HARDWARE_CLEARS #if GDISP_HARDWARE_CLEARS
static void subclear(GDisplay *g, color_t color) {
unsigned x, y;
uint8_t byte;
static void subclear(color_t color) hscan_start(g);
{ byte = color ? BYTE_WHITE : BYTE_BLACK;
unsigned x, y; for (x = 0; x < GDISP_SCREEN_WIDTH; x++)
uint8_t byte; {
hscan_write(g, &byte, 1);
hscan_start(); }
byte = color ? BYTE_WHITE : BYTE_BLACK; hscan_stop(g);
for (x = 0; x < GDISP_SCREEN_WIDTH; x++)
{
hscan_write(&byte, 1);
}
hscan_stop();
setpin_oe(TRUE);
vscan_start();
for (y = 0; y < GDISP_SCREEN_HEIGHT; y++)
{
vscan_bulkwrite();
}
vscan_stop();
setpin_oe(FALSE);
}
void gdisp_lld_clear(color_t color) setpin_oe(g, TRUE);
{ vscan_start(g);
unsigned i; for (y = 0; y < GDISP_SCREEN_HEIGHT; y++)
clear_block_map(); vscan_bulkwrite(g);
vscan_stop(g);
if (EINK_BLINKCLEAR) setpin_oe(g, FALSE);
{
subclear(!color);
gfxSleepMilliseconds(50);
} }
for (i = 0; i < EINK_CLEARCOUNT; i++) void gdisp_lld_clear(GDisplay *g) {
{ unsigned i;
subclear(color);
gfxSleepMilliseconds(10); clear_block_map(g);
if (EINK_BLINKCLEAR) {
subclear(g, !g->p.color);
gfxSleepMilliseconds(50);
}
for (i = 0; i < EINK_CLEARCOUNT; i++) {
subclear(g, g->p.color);
gfxSleepMilliseconds(10);
}
} }
}
#endif #endif
#endif #endif // GFX_USE_GDISP

View File

@ -1,2 +1,2 @@
GFXSRC += $(GFXLIB)/drivers/gdisp/ED060SC4/gdisp_lld.c
GFXINC += $(GFXLIB)/drivers/gdisp/ED060SC4 GFXINC += $(GFXLIB)/drivers/gdisp/ED060SC4
GFXSRC += $(GFXLIB)/drivers/gdisp/ED060SC4/gdisp_lld.c

View File

@ -1,83 +0,0 @@
/*
* This file is subject to the terms of the GFX License. If a copy of
* the license was not distributed with this file, you can obtain one at:
*
* http://ugfx.org/license.html
*/
/* Board interface definitions for ED060SC4 PrimeView E-ink panel.
*
* You should implement the following functions to define the interface to
* the panel on your board.
*/
#ifndef _GDISP_LLD_BOARD_H
#define _GDISP_LLD_BOARD_H
/* Set up IO pins for the panel connection. */
static inline void init_board(void) {
#error Unimplemented
}
/* Delay for display waveforms. Should be an accurate microsecond delay. */
static void eink_delay(int us)
{
#error Unimplemented
}
/* Turn the E-ink panel Vdd supply (+3.3V) on or off. */
static inline void setpower_vdd(bool_t on) {
#error Unimplemented
}
/* Turn the E-ink panel negative supplies (-15V, -20V) on or off. */
static inline void setpower_vneg(bool_t on) {
#error Unimplemented
}
/* Turn the E-ink panel positive supplies (-15V, -20V) on or off. */
static inline void setpower_vpos(bool_t on) {
#error Unimplemented
}
/* Set the state of the LE (source driver Latch Enable) pin. */
static inline void setpin_le(bool_t on) {
#error Unimplemented
}
/* Set the state of the OE (source driver Output Enable) pin. */
static inline void setpin_oe(bool_t on) {
#error Unimplemented
}
/* Set the state of the CL (source driver Clock) pin. */
static inline void setpin_cl(bool_t on) {
#error Unimplemented
}
/* Set the state of the SPH (source driver Start Pulse Horizontal) pin. */
static inline void setpin_sph(bool_t on) {
#error Unimplemented
}
/* Set the state of the D0-D7 (source driver Data) pins. */
static inline void setpins_data(uint8_t value) {
#error Unimplemented
}
/* Set the state of the CKV (gate driver Clock Vertical) pin. */
static inline void setpin_ckv(bool_t on) {
#error Unimplemented
}
/* Set the state of the GMODE (gate driver Gate Mode) pin. */
static inline void setpin_gmode(bool_t on) {
#error Unimplemented
}
/* Set the state of the SPV (gate driver Start Pulse Vertical) pin. */
static inline void setpin_spv(bool_t on) {
#error Unimplemented
}
#endif

View File

@ -12,12 +12,9 @@
#if GFX_USE_GDISP #if GFX_USE_GDISP
#define GDISP_DRIVER_NAME "ED060SC4" #define GDISP_HARDWARE_FLUSH TRUE // This controller requires flushing
#define GDISP_HARDWARE_DRAWPIXEL TRUE
#define GDISP_HARDWARE_CLEARS TRUE #define GDISP_HARDWARE_CLEARS TRUE
#define GDISP_HARDWARE_FILLS FALSE
#define GDISP_HARDWARE_BITFILLS FALSE
#define GDISP_HARDWARE_SCROLL FALSE
#define GDISP_HARDWARE_PIXELREAD FALSE
#define GDISP_HARDWARE_CONTROL TRUE #define GDISP_HARDWARE_CONTROL TRUE
#define GDISP_PIXELFORMAT GDISP_PIXELFORMAT_MONO #define GDISP_PIXELFORMAT GDISP_PIXELFORMAT_MONO

View File

@ -38,8 +38,7 @@ result in faster drawing, but also use more RAM on the processor:
After drawing your images, you should flush the buffers using the following After drawing your images, you should flush the buffers using the following
command: command:
#include <ed060sc4.h> gdispFlush();
gdispControl(GDISP_CONTROL_FLUSH, 0);
The buffers are also flushed whenever you turn the display off using: The buffers are also flushed whenever you turn the display off using: