Significant improvements in alternative scheduler.

Isolate the generic thread and heap code
Tidyup's.
Generic threading now working for x86, cortex-m0->m7.
ugfx_release_2.6
inmarket 2015-07-16 19:02:59 +10:00
parent b3028a78d1
commit c1d239bbda
20 changed files with 1131 additions and 1416 deletions

View File

@ -19,7 +19,7 @@ ifeq ($(OPT_OS),raw32)
$(GFXLIB)/boards/base/STM32F746-Discovery/stm32f746g_raw32_ugfx.c \
$(GFXLIB)/boards/base/STM32F746-Discovery/stm32f746g_raw32_system.c \
$(GFXLIB)/boards/base/STM32F746-Discovery/stm32f746g_raw32_interrupts.c
GFXDEFS += GFX_OS_EXTRA_INIT_FUNCTION=Raw32OSInit
GFXDEFS += GFX_OS_EXTRA_INIT_FUNCTION=Raw32OSInit GFX_OS_INIT_NO_WARNING=TRUE
SRCFLAGS+= -std=c99
GFXINC += $(CMSIS)/Device/ST/STM32F7xx/Include \
$(CMSIS)/Include \

View File

@ -55,7 +55,7 @@ LDFLAGS =
SRC =
OBJS =
DEFS = GOS_RAW_HEAP_SIZE=40960
DEFS = GFX_OS_HEAP_SIZE=40960
LIBS =
INCPATH =

View File

@ -13,7 +13,6 @@ systemticks_t gfxMillisecondsToTicks(delaytime_t ms)
static void SystemClock_Config(void);
static void CPU_CACHE_Enable(void);
static void LCD_Config(void);
void Raw32OSInit(void) {
RCC_PeriphCLKInitTypeDef PeriphClkInitStruct;

View File

@ -3,3 +3,7 @@ GFXSRC +=
GFXLIBS +=
include $(GFXLIB)/drivers/multiple/Win32/driver.mk
include $(GFXLIB)/drivers/gaudio/Win32/driver.mk
ifeq ($(OPT_OS),win32.raw32)
GFXDEFS += GFX_OS_INIT_NO_WARNING=TRUE
endif

View File

@ -35,13 +35,15 @@
//#define GFX_USE_OS_ECOS FALSE
//#define GFX_USE_OS_RAWRTOS FALSE
//#define GFX_USE_OS_RAW32 FALSE
// #define GOS_RAW_HEAP_SIZE 0
// #define INTERRUPTS_OFF() optional_code
// #define INTERRUPTS_ON() optional_code
// Options that (should where relevant) apply to all operating systems
// #define GFX_COMPILER GFX_COMPILER_UNKNOWN
// #define GFX_CPU GFX_CPU_UNKNOWN
// #define GFX_OS_HEAP_SIZE 0
// #define GFX_NO_OS_INIT FALSE
// #define GFX_OS_INIT_NO_WARNING FALSE
// #define GFX_OS_EXTRA_INIT_FUNCTION myOSInitRoutine
// #define GFX_OS_EXTRA_DEINIT_FUNCTION myOSDeInitRoutine

View File

@ -11,5 +11,7 @@ GFXSRC += $(GFXLIB)/src/gos/gos_chibios.c \
$(GFXLIB)/src/gos/gos_raw32.c \
$(GFXLIB)/src/gos/gos_ecos.c \
$(GFXLIB)/src/gos/gos_rawrtos.c \
$(GFXLIB)/src/gos/gos_arduino.c
$(GFXLIB)/src/gos/gos_arduino.c \
$(GFXLIB)/src/gos/gos_x_threads.c \
$(GFXLIB)/src/gos/gos_x_heap.c

View File

@ -11,7 +11,8 @@
#include <string.h> // Prototype for memcpy()
static void _gosThreadsInit(void);
void _gosHeapInit(void);
void _gosThreadsInit(void);
/*********************************************************
* Initialise
@ -23,7 +24,12 @@ void _gosInit(void)
* On the other hand the C runtime should still already be initialized before
* getting here!
*/
#warning "GOS: Arduino - Make sure you initialize your hardware and the C runtime before calling gfxInit() in your application!"
#if !GFX_OS_INIT_NO_WARNING
#warning "GOS: Arduino - Make sure you initialize your hardware and the C runtime before calling gfxInit() in your application!"
#endif
// Start the heap allocator
_gosHeapInit();
// Start the scheduler
_gosThreadsInit();
@ -53,488 +59,16 @@ void gfxExit(void) {
dummy++;
}
/*********************************************************
* Head allocation functions
*********************************************************/
#include <stdlib.h> // Prototype for malloc(), realloc() and free()
void *gfxAlloc(size_t sz) {
return malloc(sz);
}
void *gfxRealloc(void *ptr, size_t oldsz, size_t newsz) {
(void) oldsz;
return realloc(ptr, newsz);
}
void gfxFree(void *ptr) {
free(ptr);
}
/*********************************************************
* Semaphores and critical region functions
*********************************************************/
#if !defined(INTERRUPTS_OFF) || !defined(INTERRUPTS_ON)
#define INTERRUPTS_OFF()
#define INTERRUPTS_ON()
#endif
void gfxSystemLock(void) {
INTERRUPTS_OFF();
}
void gfxSystemUnlock(void) {
INTERRUPTS_ON();
}
void gfxMutexInit(gfxMutex *pmutex) {
pmutex[0] = 0;
}
void gfxMutexEnter(gfxMutex *pmutex) {
INTERRUPTS_OFF();
while (pmutex[0]) {
INTERRUPTS_ON();
gfxYield();
INTERRUPTS_OFF();
}
pmutex[0] = 1;
INTERRUPTS_ON();
}
void gfxMutexExit(gfxMutex *pmutex) {
pmutex[0] = 0;
}
void gfxSemInit(gfxSem *psem, semcount_t val, semcount_t limit) {
psem->cnt = val;
psem->limit = limit;
}
bool_t gfxSemWait(gfxSem *psem, delaytime_t ms) {
systemticks_t starttm, delay;
// Convert our delay to ticks
switch (ms) {
case TIME_IMMEDIATE:
delay = TIME_IMMEDIATE;
break;
case TIME_INFINITE:
delay = TIME_INFINITE;
break;
default:
delay = gfxMillisecondsToTicks(ms);
if (!delay) delay = 1;
starttm = gfxSystemTicks();
}
INTERRUPTS_OFF();
while (psem->cnt <= 0) {
INTERRUPTS_ON();
// Check if we have exceeded the defined delay
switch (delay) {
case TIME_IMMEDIATE:
return FALSE;
case TIME_INFINITE:
break;
default:
if (gfxSystemTicks() - starttm >= delay)
return FALSE;
break;
}
gfxYield();
INTERRUPTS_OFF();
}
psem->cnt--;
INTERRUPTS_ON();
return TRUE;
}
bool_t gfxSemWaitI(gfxSem *psem) {
if (psem->cnt <= 0)
return FALSE;
psem->cnt--;
return TRUE;
}
void gfxSemSignal(gfxSem *psem) {
INTERRUPTS_OFF();
gfxSemSignalI(psem);
INTERRUPTS_ON();
}
void gfxSemSignalI(gfxSem *psem) {
if (psem->cnt < psem->limit)
psem->cnt++;
}
/*********************************************************
* Sleep functions
*********************************************************/
void gfxSleepMilliseconds(delaytime_t ms) {
systemticks_t starttm, delay;
// Safety first
switch (ms) {
case TIME_IMMEDIATE:
return;
case TIME_INFINITE:
while(1)
gfxYield();
return;
}
// Convert our delay to ticks
delay = gfxMillisecondsToTicks(ms);
starttm = gfxSystemTicks();
do {
gfxYield();
} while (gfxSystemTicks() - starttm < delay);
systemticks_t gfxSystemTicks(void) {
return millis();
}
systemticks_t gfxMillisecondsToTicks(delaytime_t ms) {
return ms;
}
void gfxSleepMicroseconds(delaytime_t ms) {
systemticks_t starttm, delay;
// Safety first
switch (ms) {
case TIME_IMMEDIATE:
return;
case TIME_INFINITE:
while(1)
gfxYield();
return;
}
// Convert our delay to ticks
delay = gfxMillisecondsToTicks(ms/1000);
starttm = gfxSystemTicks();
do {
gfxYield();
} while (gfxSystemTicks() - starttm < delay);
}
/*********************************************************
* Threading functions
*********************************************************/
/**
* There are some compilers we know how they store the jmpbuf. For those
* we can use the constant macro definitions. For others we have to "auto-detect".
* Auto-detection is hairy and there is no guarantee it will work on all architectures.
* For those it doesn't - read the compiler manuals and the library source code to
* work out the correct macro values.
* You can use the debugger to work out the values for your compiler and put them here.
* Defining these macros as constant values makes the system behavior guaranteed but also
* makes your code compiler and cpu architecture dependent. It also saves a heap of code
* and a few bytes of RAM.
*/
#if GFX_COMPILER == GFX_COMPILER_MINGW32
#define AUTO_DETECT_MASK FALSE
#define STACK_DIR_UP FALSE
#define MASK1 0x00000011
#define MASK2 0x00000000
#define STACK_BASE 12
#else
// Use auto-detection of the stack frame format
// Assumes all the relevant stuff to be relocated is in the first 256 bytes of the jmpbuf.
#define AUTO_DETECT_MASK TRUE
#define STACK_DIR_UP stackdirup // TRUE if the stack grow up instead of down
#define MASK1 jmpmask1 // The 1st mask of jmp_buf elements that need relocation
#define MASK2 jmpmask2 // The 2nd mask of jmp_buf elements that need relocation
#define STACK_BASE stackbase // The base of the stack frame relative to the local variables
static bool_t stackdirup;
static uint32_t jmpmask1;
static uint32_t jmpmask2;
static size_t stackbase;
#endif
#include <setjmp.h> /* jmp_buf, setjmp(), longjmp() */
/**
* Some compilers define a _setjmp() and a setjmp().
* The difference between them is that setjmp() saves the signal masks.
* That is of no use to us so prefer to use the _setjmp() methods.
* If they don't exist compile them to be the standard setjmp() function.
* Similarly for longjmp().
*/
#if (!defined(setjmp) && !defined(_setjmp)) || defined(__KEIL__) || defined(__C51__)
#define _setjmp setjmp
#endif
#if (!defined(longjmp) && !defined(_longjmp)) || defined(__KEIL__) || defined(__C51__)
#define _longjmp longjmp
#endif
typedef struct thread {
struct thread * next; // Next thread
int flags; // Flags
#define FLG_THD_ALLOC 0x0001
#define FLG_THD_MAIN 0x0002
#define FLG_THD_DEAD 0x0004
#define FLG_THD_WAIT 0x0008
size_t size; // Size of the thread stack (including this structure)
threadreturn_t (*fn)(void *param); // Thread function
void * param; // Parameter for the thread function
jmp_buf cxt; // The current thread context.
} thread;
typedef struct threadQ {
thread *head;
thread *tail;
} threadQ;
static threadQ readyQ; // The list of ready threads
static threadQ deadQ; // Where we put threads waiting to be deallocated
static thread * current; // The current running thread
static thread mainthread; // The main thread context
static void Qinit(threadQ * q) {
q->head = q->tail = 0;
}
static void Qadd(threadQ * q, thread *t) {
t->next = 0;
if (q->head) {
q->tail->next = t;
q->tail = t;
} else
q->head = q->tail = t;
}
static thread *Qpop(threadQ * q) {
struct thread * t;
if (!q->head)
return 0;
t = q->head;
q->head = t->next;
return t;
}
#if AUTO_DETECT_MASK
// The structure for the saved stack frame information
typedef struct saveloc {
char * localptr;
jmp_buf cxt;
} saveloc;
// A pointer to our auto-detection buffer.
static saveloc *pframeinfo;
/* These functions are not static to prevent the compiler removing them as functions */
void get_stack_state(void) {
char* c;
pframeinfo->localptr = (char *)&c;
_setjmp(pframeinfo->cxt);
}
void get_stack_state_in_fn(void) {
pframeinfo++;
get_stack_state();
pframeinfo--;
}
#endif
static void _gosThreadsInit(void) {
Qinit(&readyQ);
current = &mainthread;
current->next = 0;
current->size = sizeof(thread);
current->flags = FLG_THD_MAIN;
current->fn = 0;
current->param = 0;
#if AUTO_DETECT_MASK
{
uint32_t i;
char ** pout;
char ** pin;
size_t diff;
char * framebase;
// Allocate a buffer to store our test data
pframeinfo = gfxAlloc(sizeof(saveloc)*2);
// Get details of the stack frame from within a function
get_stack_state_in_fn();
// Get details of the stack frame outside the function
get_stack_state();
/* Work out the frame entries to relocate by treating the jump buffer as an array of pointers */
stackdirup = pframeinfo[1].localptr > pframeinfo[0].localptr;
pout = (char **)pframeinfo[0].cxt;
pin = (char **)pframeinfo[1].cxt;
diff = pframeinfo[0].localptr - pframeinfo[1].localptr;
framebase = pframeinfo[0].localptr;
jmpmask1 = jmpmask2 = 0;
for (i = 0; i < sizeof(jmp_buf)/sizeof(char *); i++, pout++, pin++) {
if ((size_t)(*pout - *pin) == diff) {
if (i < 32)
jmpmask1 |= 1 << i;
else
jmpmask2 |= 1 << (i-32);
if (stackdirup) {
if (framebase > *pout)
framebase = *pout;
} else {
if (framebase < *pout)
framebase = *pout;
}
}
}
stackbase = stackdirup ? (pframeinfo[0].localptr - framebase) : (framebase - pframeinfo[0].localptr);
// Clean up
gfxFree(pframeinfo);
}
#endif
}
gfxThreadHandle gfxThreadMe(void) {
return (gfxThreadHandle)current;
}
void gfxYield(void) {
if (!_setjmp(current->cxt)) {
// Add us back to the Queue
Qadd(&readyQ, current);
// Check if there are dead processes to deallocate
while ((current = Qpop(&deadQ)))
gfxFree(current);
// Run the next process
current = Qpop(&readyQ);
_longjmp(current->cxt, 1);
}
}
// This routine is not currently public - but it could be.
void gfxThreadExit(threadreturn_t ret) {
// Save the results
current->param = (void *)ret;
current->flags |= FLG_THD_DEAD;
// Add us to the dead list if we need deallocation as we can't free ourselves.
// If someone is waiting on the thread they will do the cleanup.
if ((current->flags & (FLG_THD_ALLOC|FLG_THD_WAIT)) == FLG_THD_ALLOC)
Qadd(&deadQ, current);
// Switch to the next task
current = Qpop(&readyQ);
if (!current)
gfxExit(); // Oops - this should never happen!
_longjmp(current->cxt, 1);
}
gfxThreadHandle gfxThreadCreate(void *stackarea, size_t stacksz, threadpriority_t prio, DECLARE_THREAD_FUNCTION((*fn),p), void *param) {
thread * t;
(void) prio;
// Ensure we have a minimum stack size
if (stacksz < sizeof(thread)+64) {
stacksz = sizeof(thread)+64;
stackarea = 0;
}
if (stackarea) {
t = (thread *)stackarea;
t->flags = 0;
} else {
t = (thread *)gfxAlloc(stacksz);
if (!t)
return 0;
t->flags = FLG_THD_ALLOC;
}
t->size = stacksz;
t->fn = fn;
t->param = param;
if (_setjmp(t->cxt)) {
// This is the new thread - call the function!
gfxThreadExit(current->fn(current->param));
// We never get here
return 0;
}
// Move the stack frame and relocate the context data
{
char ** s;
char * nf;
int diff;
uint32_t i;
// Copy the stack frame
#if AUTO_DETECT_MASK
if (STACK_DIR_UP) { // Stack grows up
nf = (char *)(t) + sizeof(thread) + stackbase;
memcpy(t+1, (char *)&t - stackbase, stackbase+sizeof(char *));
} else { // Stack grows down
nf = (char *)(t) + stacksz - (stackbase + sizeof(char *));
memcpy(nf, &t, stackbase+sizeof(char *));
}
#elif STACK_DIR_UP
// Stack grows up
nf = (char *)(t) + sizeof(thread) + stackbase;
memcpy(t+1, (char *)&t - stackbase, stackbase+sizeof(char *));
#else
// Stack grows down
nf = (char *)(t) + size - (stackbase + sizeof(char *));
memcpy(nf, &t, stackbase+sizeof(char *));
#endif
// Relocate the context data
s = (char **)(t->cxt);
diff = nf - (char *)&t;
// Relocate the elements we know need to be relocated
for (i = 1; i && i < MASK1; i <<= 1, s++) {
if ((MASK1 & i))
*s += diff;
}
#ifdef MASK2
for (i = 1; i && i < MASK2; i <<= 1, s++) {
if ((MASK1 & i))
*s += diff;
}
#endif
}
// Add this thread to the ready queue
Qadd(&readyQ, t);
return t;
}
threadreturn_t gfxThreadWait(gfxThreadHandle th) {
thread * t;
t = th;
if (t == current)
return -1;
// Mark that we are waiting
t->flags |= FLG_THD_WAIT;
// Wait for the thread to die
while(!(t->flags & FLG_THD_DEAD))
gfxYield();
// Unmark
t->flags &= ~FLG_THD_WAIT;
// Clean up resources if needed
if (t->flags & FLG_THD_ALLOC)
gfxFree(t);
// Return the status left by the dead process
return (threadreturn_t)t->param;
}
#endif /* GFX_USE_OS_RAW32 */
#endif /* GFX_USE_OS_ARDUINO */

View File

@ -44,70 +44,26 @@ typedef bool bool_t;
typedef uint32_t size_t;
#endif
typedef uint32_t delaytime_t;
typedef uint32_t systemticks_t;
typedef short semcount_t;
typedef int threadreturn_t;
typedef int threadpriority_t;
#define DECLARE_THREAD_FUNCTION(fnName, param) threadreturn_t fnName(void *param)
#define DECLARE_THREAD_STACK(name, sz) uint8_t name[sz];
#define TIME_IMMEDIATE 0
#define TIME_INFINITE ((delaytime_t)-1)
#define MAX_SEMAPHORE_COUNT 0x7FFF
#define LOW_PRIORITY 0
#define NORMAL_PRIORITY 1
#define HIGH_PRIORITY 2
typedef struct {
semcount_t cnt;
semcount_t limit;
} gfxSem;
typedef uint32_t gfxMutex;
typedef void * gfxThreadHandle;
#define gfxThreadClose(thread)
#define gfxMutexDestroy(pmutex)
#define gfxSemDestroy(psem)
#define gfxSemCounter(psem) ((psem)->cnt)
#define gfxSemCounterI(psem) ((psem)->cnt)
#define gfxSystemTicks() millis()
#define gfxMillisecondsToTicks(ms) (ms)
#ifdef __cplusplus
extern "C" {
#endif
void gfxHalt(const char *msg);
void gfxExit(void);
void *gfxAlloc(size_t sz);
void *gfxRealloc(void *ptr, size_t oldsz, size_t newsz);
void gfxFree(void *ptr);
void gfxYield(void);
void gfxSleepMilliseconds(delaytime_t ms);
void gfxSleepMicroseconds(delaytime_t ms);
//systemticks_t gfxSystemTicks(void);
//systemticks_t gfxMillisecondsToTicks(delaytime_t ms);
void gfxSystemLock(void);
void gfxSystemUnlock(void);
void gfxMutexInit(gfxMutex *pmutex);
void gfxMutexEnter(gfxMutex *pmutex);
void gfxMutexExit(gfxMutex *pmutex);
void gfxSemInit(gfxSem *psem, semcount_t val, semcount_t limit);
bool_t gfxSemWait(gfxSem *psem, delaytime_t ms);
bool_t gfxSemWaitI(gfxSem *psem);
void gfxSemSignal(gfxSem *psem);
void gfxSemSignalI(gfxSem *psem);
gfxThreadHandle gfxThreadCreate(void *stackarea, size_t stacksz, threadpriority_t prio, DECLARE_THREAD_FUNCTION((*fn),p), void *param);
threadreturn_t gfxThreadWait(gfxThreadHandle thread);
gfxThreadHandle gfxThreadMe(void);
#ifdef __cplusplus
}
#endif
/*===========================================================================*/
/* Use the generic thread handling and heap handling */
/*===========================================================================*/
#define GOS_NEED_X_THREADS TRUE
#define GOS_NEED_X_HEAP TRUE
#include "gos_x_threads.h"
#include "gos_x_heap.h"
#endif /* GFX_USE_OS_ARDUINO */
#endif /* _GOS_ARDUINO_H */

View File

@ -48,7 +48,7 @@ void _gosInit(void)
chSysInit();
}
#endif
#else
#elif !GFX_OS_INIT_NO_WARNING
#warning "GOS: Operating System initialization has been turned off. Make sure you call halInit() and chSysInit() before gfxInit() in your application!"
#endif
}

View File

@ -13,7 +13,8 @@ void _gosInit(void)
{
#if !GFX_NO_OS_INIT
#error "GOS: Operating System initialization for eCos is not yet implemented in uGFX. Please set GFX_NO_OS_INIT to TRUE in your gfxconf.h"
#else
#endif
#if !GFX_OS_INIT_NO_WARNING
#warning "GOS: Operating System initialization has been turned off. Make sure you call cyg_scheduler_start() before gfxInit() in your application!"
#endif
}

View File

@ -26,7 +26,8 @@ void _gosInit(void)
{
#if !GFX_NO_OS_INIT
#error "GOS: Operating System initialization for FreeRTOS is not yet implemented in uGFX. Please set GFX_NO_OS_INIT to TRUE in your gfxconf.h"
#else
#endif
#if !GFX_OS_INIT_NO_WARNING
#warning "GOS: Operating System initialization has been turned off. Make sure you call vTaskStartScheduler() before gfxInit() in your application!"
#endif
}

View File

@ -14,3 +14,5 @@
#include "gos_raw32.c"
#include "gos_rawrtos.c"
#include "gos_win32.c"
#include "gos_x_threads.c"
#include "gos_x_heap.c"

View File

@ -74,7 +74,7 @@
* @details Defaults to FALSE
*/
#ifndef GFX_USE_OS_ARDUINO
#define GFX_USE_OS_ARDUINO FALSE
#define GFX_USE_OS_ARDUINO FALSE
#endif
/**
* @}
@ -88,12 +88,35 @@
* @note This is setting enables optimisations that are compiler specific. It does
* not need to be specified as reasonable defaults and various auto-detection
* will happen as required.
* @note Currently only used by ugfx generic thread handling (GOS_USE_OS_RAW32 and GOS_USE_OS_ARDUINO)
*/
#ifndef GFX_COMPILER
#define GFX_COMPILER GFX_COMPILER_UNKNOWN
#endif
#define GFX_COMPILER_UNKNOWN 0 // Unknown compiler
#define GFX_COMPILER_MINGW32 1 // MingW32 (x86) compiler for windows
/**
* @brief Enable cpu specific code
* @details Defaults to GFX_CPU_UNKNOWN
* @note This is setting enables optimisations that are cpu specific. It does
* not need to be specified as reasonable defaults and various auto-detection
* will happen as required.
* @note Currently only used by ugfx generic thread handling (GOS_USE_OS_RAW32 and GOS_USE_OS_ARDUINO)
* @{
*/
#ifndef GFX_CPU
#define GFX_CPU GFX_CPU_UNKNOWN
#endif
#define GFX_CPU_UNKNOWN 0 //**< Unknown cpu
#define GFX_CPU_CORTEX_M0 1 //**< Cortex M0
#define GFX_CPU_CORTEX_M1 2 //**< Cortex M1
#define GFX_CPU_CORTEX_M2 3 //**< Cortex M2
#define GFX_CPU_CORTEX_M3 4 //**< Cortex M3
#define GFX_CPU_CORTEX_M4 5 //**< Cortex M4
#define GFX_CPU_CORTEX_M4_FP 6 //**< Cortex M4 with hardware floating point
#define GFX_CPU_CORTEX_M7 7 //**< Cortex M7
#define GFX_CPU_CORTEX_M7_FP 8 //**< Cortex M7 with hardware floating point
/** @} */
/**
* @brief Should uGFX avoid initializing the operating system
* @details Defaults to FALSE
@ -108,6 +131,16 @@
#ifndef GFX_NO_OS_INIT
#define GFX_NO_OS_INIT FALSE
#endif
/**
* @brief Turn off warnings about initializing the operating system
* @details Defaults to FALSE
* @note This is only relevant where GOS cannot initialise the operating
* system automatically or the operating system initialisation has been
* explicitly turned off.
*/
#ifndef GFX_OS_INIT_NO_WARNING
#define GFX_OS_INIT_NO_WARNING FALSE
#endif
/**
* @brief Should uGFX stuff be added to the FreeRTOS+Tracer
* @details Defaults to FALSE
@ -117,7 +150,8 @@
#endif
/**
* @brief How much RAM should uGFX use for the heap
* @details Defaults to 0. Only valid with GFX_USE_OS_RAW32
* @details Defaults to 0.
* @note Only used when the generic ugfx heap code is used (GFX_USE_OS_RAW32 and GFX_USE_OS_ARDUINO)
* @note If 0 then the standard C runtime malloc(), free() and realloc()
* are used.
* @note If it is non-zero then this is the number of bytes of RAM
@ -125,8 +159,8 @@
* runtime routines will be used and a new routine @p gfxAddHeapBlock()
* is added allowing the user to add extra memory blocks to the heap.
*/
#ifndef GOS_RAW_HEAP_SIZE
#define GOS_RAW_HEAP_SIZE 0
#ifndef GFX_OS_HEAP_SIZE
#define GFX_OS_HEAP_SIZE 0
#endif
/** @} */

View File

@ -12,14 +12,8 @@
#if GFX_USE_OS_RAW32
#include <string.h> // Prototype for memcpy()
#if GOS_RAW_HEAP_SIZE != 0
static void _gosHeapInit(void);
#else
#define _gosHeapInit()
#endif
static void _gosThreadsInit(void);
void _gosHeapInit(void);
void _gosThreadsInit(void);
/*********************************************************
* Initialise
@ -31,7 +25,9 @@ void _gosInit(void)
* On the other hand the C runtime should still already be initialized before
* getting here!
*/
#warning "GOS: Raw32 - Make sure you initialize your hardware and the C runtime before calling gfxInit() in your application!"
#if !GFX_OS_INIT_NO_WARNING
#warning "GOS: Raw32 - Make sure you initialize your hardware and the C runtime before calling gfxInit() in your application!"
#endif
// Set up the heap allocator
_gosHeapInit();
@ -46,7 +42,7 @@ void _gosDeinit(void)
}
/*********************************************************
* For WIn32 emulation - automatically add the tick functions
* For Win32 emulation - automatically add the tick functions
* the user would normally have to provide for bare metal.
*********************************************************/
@ -98,777 +94,4 @@ void gfxExit(void) {
#endif
}
/*********************************************************
* Head allocation functions
*********************************************************/
#if GOS_RAW_HEAP_SIZE == 0
#include <stdlib.h> // Prototype for malloc(), realloc() and free()
void *gfxAlloc(size_t sz) {
return malloc(sz);
}
void *gfxRealloc(void *ptr, size_t oldsz, size_t newsz) {
(void) oldsz;
return realloc(ptr, newsz);
}
void gfxFree(void *ptr) {
free(ptr);
}
#else
// Slot structure - user memory follows
typedef struct memslot {
struct memslot *next; // The next memslot
size_t sz; // Includes the size of this memslot.
} memslot;
// Free Slot - immediately follows the memslot structure
typedef struct freeslot {
memslot *nextfree; // The next free slot
} freeslot;
#define GetSlotSize(sz) ((((sz) + (sizeof(freeslot) - 1)) & ~(sizeof(freeslot) - 1)) + sizeof(memslot))
#define NextFree(pslot) ((freeslot *)Slot2Ptr(pslot))->nextfree
#define Ptr2Slot(p) ((memslot *)(p) - 1)
#define Slot2Ptr(pslot) ((pslot)+1)
static memslot * firstSlot;
static memslot * lastSlot;
static memslot * freeSlots;
static char heap[GOS_RAW_HEAP_SIZE];
static void _gosHeapInit(void) {
lastSlot = 0;
gfxAddHeapBlock(heap, GOS_RAW_HEAP_SIZE);
}
void gfxAddHeapBlock(void *ptr, size_t sz) {
if (sz < sizeof(memslot)+sizeof(freeslot))
return;
if (lastSlot)
lastSlot->next = (memslot *)ptr;
else
firstSlot = lastSlot = freeSlots = (memslot *)ptr;
lastSlot->next = 0;
lastSlot->sz = sz;
NextFree(lastSlot) = 0;
}
void *gfxAlloc(size_t sz) {
register memslot *prev, *p, *new;
if (!sz) return 0;
sz = GetSlotSize(sz);
for (prev = 0, p = freeSlots; p != 0; prev = p, p = NextFree(p)) {
// Loop till we have a block big enough
if (p->sz < sz)
continue;
// Can we save some memory by splitting this block?
if (p->sz >= sz + sizeof(memslot)+sizeof(freeslot)) {
new = (memslot *)((char *)p + sz);
new->next = p->next;
p->next = new;
new->sz = p->sz - sz;
p->sz = sz;
if (lastSlot == p)
lastSlot = new;
NextFree(new) = NextFree(p);
NextFree(p) = new;
}
// Remove it from the free list
if (prev)
NextFree(prev) = NextFree(p);
else
freeSlots = NextFree(p);
// Return the result found
return Slot2Ptr(p);
}
// No slots large enough
return 0;
}
void *gfxRealloc(void *ptr, size_t oldsz, size_t sz) {
register memslot *prev, *p, *new;
(void) oldsz;
if (!ptr)
return gfxAlloc(sz);
if (!sz) {
gfxFree(ptr);
return 0;
}
p = Ptr2Slot(ptr);
sz = GetSlotSize(sz);
// If the next slot is free (and contiguous) merge it into this one
if ((char *)p + p->sz == (char *)p->next) {
for (prev = 0, new = freeSlots; new != 0; prev = new, new = NextFree(new)) {
if (new == p->next) {
p->next = new->next;
p->sz += new->sz;
if (prev)
NextFree(prev) = NextFree(new);
else
freeSlots = NextFree(new);
if (lastSlot == new)
lastSlot = p;
break;
}
}
}
// If this block is large enough we are nearly done
if (sz < p->sz) {
// Can we save some memory by splitting this block?
if (p->sz >= sz + sizeof(memslot)+sizeof(freeslot)) {
new = (memslot *)((char *)p + sz);
new->next = p->next;
p->next = new;
new->sz = p->sz - sz;
p->sz = sz;
if (lastSlot == p)
lastSlot = new;
NextFree(new) = freeSlots;
freeSlots = new;
}
return Slot2Ptr(p);
}
// We need to do this the hard way
if ((new = gfxAlloc(sz)))
return 0;
memcpy(new, ptr, p->sz - sizeof(memslot));
gfxFree(ptr);
return new;
}
void gfxFree(void *ptr) {
register memslot *prev, *p, *new;
if (!ptr)
return;
p = Ptr2Slot(ptr);
// If the next slot is free (and contiguous) merge it into this one
if ((char *)p + p->sz == (char *)p->next) {
for (prev = 0, new = freeSlots; new != 0; prev = new, new = NextFree(new)) {
if (new == p->next) {
p->next = new->next;
p->sz += new->sz;
if (prev)
NextFree(prev) = NextFree(new);
else
freeSlots = NextFree(new);
if (lastSlot == new)
lastSlot = p;
break;
}
}
}
// Add it into the free chain
NextFree(p) = freeSlots;
freeSlots = p;
}
#endif
/*********************************************************
* Semaphores and critical region functions
*********************************************************/
#if !defined(INTERRUPTS_OFF) || !defined(INTERRUPTS_ON)
#define INTERRUPTS_OFF()
#define INTERRUPTS_ON()
#endif
void gfxSystemLock(void) {
INTERRUPTS_OFF();
}
void gfxSystemUnlock(void) {
INTERRUPTS_ON();
}
void gfxMutexInit(gfxMutex *pmutex) {
pmutex[0] = 0;
}
void gfxMutexEnter(gfxMutex *pmutex) {
INTERRUPTS_OFF();
while (pmutex[0]) {
INTERRUPTS_ON();
gfxYield();
INTERRUPTS_OFF();
}
pmutex[0] = 1;
INTERRUPTS_ON();
}
void gfxMutexExit(gfxMutex *pmutex) {
pmutex[0] = 0;
}
void gfxSemInit(gfxSem *psem, semcount_t val, semcount_t limit) {
psem->cnt = val;
psem->limit = limit;
}
bool_t gfxSemWait(gfxSem *psem, delaytime_t ms) {
systemticks_t starttm, delay;
// Convert our delay to ticks
switch (ms) {
case TIME_IMMEDIATE:
delay = TIME_IMMEDIATE;
break;
case TIME_INFINITE:
delay = TIME_INFINITE;
break;
default:
delay = gfxMillisecondsToTicks(ms);
if (!delay) delay = 1;
starttm = gfxSystemTicks();
}
INTERRUPTS_OFF();
while (psem->cnt <= 0) {
INTERRUPTS_ON();
// Check if we have exceeded the defined delay
switch (delay) {
case TIME_IMMEDIATE:
return FALSE;
case TIME_INFINITE:
break;
default:
if (gfxSystemTicks() - starttm >= delay)
return FALSE;
break;
}
gfxYield();
INTERRUPTS_OFF();
}
psem->cnt--;
INTERRUPTS_ON();
return TRUE;
}
bool_t gfxSemWaitI(gfxSem *psem) {
if (psem->cnt <= 0)
return FALSE;
psem->cnt--;
return TRUE;
}
void gfxSemSignal(gfxSem *psem) {
INTERRUPTS_OFF();
gfxSemSignalI(psem);
INTERRUPTS_ON();
}
void gfxSemSignalI(gfxSem *psem) {
if (psem->cnt < psem->limit)
psem->cnt++;
}
/*********************************************************
* Sleep functions
*********************************************************/
void gfxSleepMilliseconds(delaytime_t ms) {
systemticks_t starttm, delay;
// Safety first
switch (ms) {
case TIME_IMMEDIATE:
return;
case TIME_INFINITE:
while(1)
gfxYield();
return;
}
// Convert our delay to ticks
delay = gfxMillisecondsToTicks(ms);
starttm = gfxSystemTicks();
do {
gfxYield();
} while (gfxSystemTicks() - starttm < delay);
}
void gfxSleepMicroseconds(delaytime_t ms) {
systemticks_t starttm, delay;
// Safety first
switch (ms) {
case TIME_IMMEDIATE:
return;
case TIME_INFINITE:
while(1)
gfxYield();
return;
}
// Convert our delay to ticks
delay = gfxMillisecondsToTicks(ms/1000);
starttm = gfxSystemTicks();
do {
gfxYield();
} while (gfxSystemTicks() - starttm < delay);
}
/*********************************************************
* Threading functions
*********************************************************/
#if GOS_RAW_SCHEDULER == SCHED_USE_SETJMP
/**
* There are some compilers we know how they store the jmpbuf. For those
* we can use the constant macro definitions. For others we have to "auto-detect".
* Auto-detection is hairy and there is no guarantee it will work on all architectures.
* For those it doesn't - read the compiler manuals and the library source code to
* work out the correct macro values.
* You can use the debugger to work out the values for your compiler and put them here.
* Defining these macros as constant values makes the system behavior guaranteed but also
* makes your code compiler and cpu architecture dependent. It also saves a heap of code
* and a few bytes of RAM.
*/
#if GFX_COMPILER == GFX_COMPILER_MINGW32
#define AUTO_DETECT_MASK FALSE
#define STACK_DIR_UP FALSE
#define MASK1 0x00000011
#define MASK2 0x00000000
#define STACK_BASE 12
#else
// Use auto-detection of the stack frame format
// Assumes all the relevant stuff to be relocated is in the first 256 bytes of the jmpbuf.
#define AUTO_DETECT_MASK TRUE
#define STACK_DIR_UP stackdirup // TRUE if the stack grow up instead of down
#define MASK1 jmpmask1 // The 1st mask of jmp_buf elements that need relocation
#define MASK2 jmpmask2 // The 2nd mask of jmp_buf elements that need relocation
#define STACK_BASE stackbase // The base of the stack frame relative to the local variables
static bool_t stackdirup;
static uint32_t jmpmask1;
static uint32_t jmpmask2;
static size_t stackbase;
#endif
#include <setjmp.h> /* jmp_buf, setjmp(), longjmp() */
/**
* Some compilers define a _setjmp() and a setjmp().
* The difference between them is that setjmp() saves the signal masks.
* That is of no use to us so prefer to use the _setjmp() methods.
* If they don't exist compile them to be the standard setjmp() function.
* Similarly for longjmp().
*/
#if (!defined(setjmp) && !defined(_setjmp)) || defined(__KEIL__) || defined(__C51__)
#define _setjmp setjmp
#endif
#if (!defined(longjmp) && !defined(_longjmp)) || defined(__KEIL__) || defined(__C51__)
#define _longjmp longjmp
#endif
typedef jmp_buf threadcxt;
#elif GOS_RAW_SCHEDULER == SCHED_USE_CORTEX_M0 || GOS_RAW_SCHEDULER == SCHED_USE_CORTEX_M1
typedef void * threadcxt;
#elif GOS_RAW_SCHEDULER == SCHED_USE_CORTEX_M3 || GOS_RAW_SCHEDULER == SCHED_USE_CORTEX_M4
typedef void * threadcxt;
#else
#error "GOS RAW32: Unsupported Scheduler. Try setting GOS_RAW_SCHEDULER = SCHED_USE_SETJMP"
#endif
typedef struct thread {
struct thread * next; // Next thread
int flags; // Flags
#define FLG_THD_ALLOC 0x0001
#define FLG_THD_MAIN 0x0002
#define FLG_THD_DEAD 0x0004
#define FLG_THD_WAIT 0x0008
size_t size; // Size of the thread stack (including this structure)
threadreturn_t (*fn)(void *param); // Thread function
void * param; // Parameter for the thread function
threadcxt cxt; // The current thread context.
} thread;
typedef struct threadQ {
thread *head;
thread *tail;
} threadQ;
static threadQ readyQ; // The list of ready threads
static threadQ deadQ; // Where we put threads waiting to be deallocated
static thread * current; // The current running thread
static thread mainthread; // The main thread context
static void Qinit(threadQ * q) {
q->head = q->tail = 0;
}
static void Qadd(threadQ * q, thread *t) {
t->next = 0;
if (q->head) {
q->tail->next = t;
q->tail = t;
} else
q->head = q->tail = t;
}
static thread *Qpop(threadQ * q) {
struct thread * t;
if (!q->head)
return 0;
t = q->head;
q->head = t->next;
return t;
}
#if GOS_RAW_SCHEDULER == SCHED_USE_SETJMP && AUTO_DETECT_MASK
// The structure for the saved stack frame information
typedef struct saveloc {
char * localptr;
jmp_buf cxt;
} saveloc;
// A pointer to our auto-detection buffer.
static saveloc *pframeinfo;
/* These functions are not static to prevent the compiler removing them as functions */
void get_stack_state(void) {
char *c;
pframeinfo->localptr = (char *)&c;
_setjmp(pframeinfo->cxt);
}
void get_stack_state_in_fn(void) {
pframeinfo++;
get_stack_state();
pframeinfo--;
}
#endif
static void _gosThreadsInit(void) {
Qinit(&readyQ);
current = &mainthread;
current->next = 0;
current->size = sizeof(thread);
current->flags = FLG_THD_MAIN;
current->fn = 0;
current->param = 0;
#if GOS_RAW_SCHEDULER == SCHED_USE_SETJMP && AUTO_DETECT_MASK
{
uint32_t i;
char ** pout;
char ** pin;
size_t diff;
char * framebase;
// Allocate a buffer to store our test data
pframeinfo = gfxAlloc(sizeof(saveloc)*2);
// Get details of the stack frame from within a function
get_stack_state_in_fn();
// Get details of the stack frame outside the function
get_stack_state();
/* Work out the frame entries to relocate by treating the jump buffer as an array of pointers */
stackdirup = pframeinfo[1].localptr > pframeinfo[0].localptr;
pout = (char **)pframeinfo[0].cxt;
pin = (char **)pframeinfo[1].cxt;
diff = pframeinfo[0].localptr - pframeinfo[1].localptr;
framebase = pframeinfo[0].localptr;
jmpmask1 = jmpmask2 = 0;
for (i = 0; i < sizeof(jmp_buf)/sizeof(char *); i++, pout++, pin++) {
if ((size_t)(*pout - *pin) == diff) {
if (i < 32)
jmpmask1 |= 1 << i;
else
jmpmask2 |= 1 << (i-32);
if (stackdirup) {
if (framebase > *pout)
framebase = *pout;
} else {
if (framebase < *pout)
framebase = *pout;
}
}
}
stackbase = stackdirup ? (pframeinfo[0].localptr - framebase) : (framebase - pframeinfo[0].localptr);
// Clean up
gfxFree(pframeinfo);
}
#endif
}
gfxThreadHandle gfxThreadMe(void) {
return (gfxThreadHandle)current;
}
// Check if there are dead processes to deallocate
static void cleanUpDeadThreads(void) {
thread *p;
while ((p = Qpop(&deadQ)))
gfxFree(p);
}
#if GOS_RAW_SCHEDULER == SCHED_USE_SETJMP
// Move the stack frame and relocate the context data
void _gfxAdjustCxt(thread *t) {
char ** s;
char * nf;
int diff;
uint32_t i;
// Copy the stack frame
#if AUTO_DETECT_MASK
if (STACK_DIR_UP) { // Stack grows up
nf = (char *)(t) + sizeof(thread) + stackbase;
memcpy(t+1, (char *)&s - stackbase, stackbase+sizeof(char *));
} else { // Stack grows down
nf = (char *)(t) + t->size - (stackbase + sizeof(char *));
memcpy(nf, &s, stackbase+sizeof(char *));
}
#elif STACK_DIR_UP
// Stack grows up
nf = (char *)(t) + sizeof(thread) + stackbase;
memcpy(t+1, (char *)&s - stackbase, stackbase+sizeof(char *));
#else
// Stack grows down
nf = (char *)(t) + t->size - (stackbase + sizeof(char *));
memcpy(nf, &s, stackbase+sizeof(char *));
#endif
// Relocate the context data
s = (char **)(t->cxt);
diff = nf - (char *)&s;
// Relocate the elements we know need to be relocated
for (i = 1; i && i < MASK1; i <<= 1, s++) {
if ((MASK1 & i))
*s += diff;
}
#ifdef MASK2
for (i = 1; i && i < MASK2; i <<= 1, s++) {
if ((MASK1 & i))
*s += diff;
}
#endif
}
#define CXT_SET(t) { \
if (!_setjmp(t->cxt)) { \
_gfxAdjustCxt(t); \
current = t; \
_longjmp(current->cxt, 1); \
} \
}
#define CXT_SAVE() if (_setjmp(current->cxt)) return
#define CXT_RESTORE() _longjmp(current->cxt, 1)
#elif GOS_RAW_SCHEDULER == SCHED_USE_CORTEX_M0 || GOS_RAW_SCHEDULER == SCHED_USE_CORTEX_M1
// Use the EABI calling standard (ARM's AAPCS) - Save r4 - r11
#define CXT_SET(t) { \
register void* r13 __asm__("r13"); \
current = t; \
r13 = (char*)current + current->size; \
}
/**
* Save the current thread context.
*
* Automatically returns the calling function when this thread gets restarted
* with the thread handle as the return value
*/
//
#define CXT_SAVE() { \
register void* r13 __asm__("r13"); \
__asm__ volatile ( "push {r4, r5, r6, r7, lr} \n\t" \
"mov r4, r8 \n\t" \
"mov r5, r9 \n\t" \
"mov r6, r10 \n\t" \
"mov r7, r11 \n\t" \
"push {r4, r5, r6, r7}" : : : "memory"); \
current->cxt = r13; \
}
#define CXT_RESTORE() { \
register void* r13 __asm__ ("r13"); \
r13 = current->cxt; \
__asm__ volatile ( "pop {r4, r5, r6, r7} \n\t" \
"mov r8, r4 \n\t" \
"mov r9, r5 \n\t" \
"mov r10, r6 \n\t" \
"mov r11, r7 \n\t" \
"pop {r4, r5, r6, r7, pc}" : : "r" (r13) : "memory"); \
}
#elif GOS_RAW_SCHEDULER == SCHED_USE_CORTEX_M3 || GOS_RAW_SCHEDULER == SCHED_USE_CORTEX_M4
// Use the EABI calling standard (ARM's AAPCS) - Save r4 - r11 and floating point if needed
#define CXT_SET(t) { \
register void* r13 __asm__("r13"); \
current = t; \
r13 = (char *)current + current->size; \
}
#if CORTEX_USE_FPU
#define CXT_SAVE() { \
register void* r13 __asm__("r13"); \
__asm__ volatile ("push {r4, r5, r6, r7, r8, r9, r10, r11, lr}" : : : "memory");\
__asm__ volatile ("vpush {s16-s31}" : : : "memory"); \
current->cxt = r13; \
}
#define CXT_RESTORE() { \
register void* r13 __asm__("r13"); \
r13 = current->cxt; \
__asm__ volatile ("vpop {s16-s31}" : : : "memory"); \
__asm__ volatile ("pop {r4, r5, r6, r7, r8, r9, r10, r11, pc}" : : : "memory"); \
}
#else
#define CXT_SAVE() { \
register void* r13 __asm__("r13"); \
__asm__ volatile ("push {r4, r5, r6, r7, r8, r9, r10, r11, lr}" : : : "memory");\
current->cxt = r13; \
}
#define CXT_RESTORE() { \
register void* r13 __asm__("r13"); \
r13 = current->cxt; \
__asm__ volatile ("pop {r4, r5, r6, r7, r8, r9, r10, r11, pc}" : : : "memory"); \
}
#endif
#endif
void gfxYield(void) {
// Clean up zombies
cleanUpDeadThreads();
// Is there another thread to run?
if (!readyQ.head)
return;
// Save the current thread (automatically returns when this thread gets re-executed)
CXT_SAVE();
// Add us back to the Queue
Qadd(&readyQ, current);
// Run the next process
current = Qpop(&readyQ);
CXT_RESTORE();
}
// This routine is not currently public - but it could be.
void gfxThreadExit(threadreturn_t ret) {
// Save the results in case someone is waiting
current->param = (void *)ret;
current->flags |= FLG_THD_DEAD;
// Add us to the dead list if we need deallocation as we can't free ourselves.
// If someone is waiting on the thread they will do the cleanup.
if ((current->flags & (FLG_THD_ALLOC|FLG_THD_WAIT)) == FLG_THD_ALLOC)
Qadd(&deadQ, current);
// Set the next thread
current = Qpop(&readyQ);
// Was that the last thread? If so exit
if (!current)
gfxExit();
// Switch to the new thread
CXT_RESTORE();
}
void _gfxStartThread(thread *t) {
// Save the current thread (automatically returns when this thread gets re-executed)
CXT_SAVE();
// Add the current thread to the queue because we are starting a new thread.
Qadd(&readyQ, current);
// Change to the new thread and the new stack
CXT_SET(t);
// Run the users function
gfxThreadExit(current->fn(current->param));
// We never get here!
}
gfxThreadHandle gfxThreadCreate(void *stackarea, size_t stacksz, threadpriority_t prio, DECLARE_THREAD_FUNCTION((*fn),p), void *param) {
thread * t;
(void) prio;
// Ensure we have a minimum stack size
if (stacksz < sizeof(thread)+64) {
stacksz = sizeof(thread)+64;
stackarea = 0;
}
if (stackarea) {
t = (thread *)stackarea;
t->flags = 0;
} else {
t = (thread *)gfxAlloc(stacksz);
if (!t)
return 0;
t->flags = FLG_THD_ALLOC;
}
t->size = stacksz;
t->fn = fn;
t->param = param;
_gfxStartThread(t);
// Return the new thread handle
return t;
}
threadreturn_t gfxThreadWait(gfxThreadHandle th) {
thread * t;
t = th;
if (t == current)
return -1;
// Mark that we are waiting
t->flags |= FLG_THD_WAIT;
// Wait for the thread to die
while(!(t->flags & FLG_THD_DEAD))
gfxYield();
// Unmark
t->flags &= ~FLG_THD_WAIT;
// Clean up resources if needed
if (t->flags & FLG_THD_ALLOC)
gfxFree(t);
// Return the status left by the dead process
return (threadreturn_t)t->param;
}
#endif /* GFX_USE_OS_RAW32 */

View File

@ -25,37 +25,6 @@
#if GFX_USE_OS_RAW32
/*===========================================================================*/
/* Special Macros just for a Raw implementation */
/*===========================================================================*/
/**
* @brief Set the maximum size of the heap.
* @note If set to 0 then the C runtime library malloc() and free() are used.
*/
#ifndef GOS_RAW_HEAP_SIZE
#define GOS_RAW_HEAP_SIZE 0
#endif
/**
* @brief Scheduler cpu support
*/
#define SCHED_USE_SETJMP 0
#define SCHED_USE_CORTEX_M0 1
#define SCHED_USE_CORTEX_M1 2
#define SCHED_USE_CORTEX_M2 3
#define SCHED_USE_CORTEX_M3 4
#define SCHED_USE_CORTEX_M4 5
/**
* @brief Set the preferred scheduler method
* @note If not defined the SCHED_USE_SETJMP is used which should work for most platforms.
*/
#ifndef GOS_RAW_SCHEDULER
#define GOS_RAW_SCHEDULER SCHED_USE_SETJMP
#endif
/*===========================================================================*/
/* Type definitions */
/*===========================================================================*/
@ -79,71 +48,26 @@ typedef unsigned char bool_t;
typedef uint32_t size_t;
#endif
typedef uint32_t delaytime_t;
typedef uint32_t systemticks_t;
typedef short semcount_t;
typedef int threadreturn_t;
typedef int threadpriority_t;
#define DECLARE_THREAD_FUNCTION(fnName, param) threadreturn_t fnName(void *param)
#define DECLARE_THREAD_STACK(name, sz) uint8_t name[sz];
#define TIME_IMMEDIATE 0
#define TIME_INFINITE ((delaytime_t)-1)
#define MAX_SEMAPHORE_COUNT 0x7FFF
#define LOW_PRIORITY 0
#define NORMAL_PRIORITY 1
#define HIGH_PRIORITY 2
typedef struct {
semcount_t cnt;
semcount_t limit;
} gfxSem;
typedef uint32_t gfxMutex;
typedef void * gfxThreadHandle;
#define gfxThreadClose(thread)
#define gfxMutexDestroy(pmutex)
#define gfxSemDestroy(psem)
#define gfxSemCounter(psem) ((psem)->cnt)
#define gfxSemCounterI(psem) ((psem)->cnt)
#ifdef __cplusplus
extern "C" {
#endif
#if GOS_RAW_HEAP_SIZE != 0
void gfxAddHeapBlock(void *ptr, size_t sz);
#endif
void gfxHalt(const char *msg);
void gfxExit(void);
void *gfxAlloc(size_t sz);
void *gfxRealloc(void *ptr, size_t oldsz, size_t newsz);
void gfxFree(void *ptr);
void gfxYield(void);
void gfxSleepMilliseconds(delaytime_t ms);
void gfxSleepMicroseconds(delaytime_t ms);
systemticks_t gfxSystemTicks(void);
systemticks_t gfxMillisecondsToTicks(delaytime_t ms);
void gfxSystemLock(void);
void gfxSystemUnlock(void);
void gfxMutexInit(gfxMutex *pmutex);
void gfxMutexEnter(gfxMutex *pmutex);
void gfxMutexExit(gfxMutex *pmutex);
void gfxSemInit(gfxSem *psem, semcount_t val, semcount_t limit);
bool_t gfxSemWait(gfxSem *psem, delaytime_t ms);
bool_t gfxSemWaitI(gfxSem *psem);
void gfxSemSignal(gfxSem *psem);
void gfxSemSignalI(gfxSem *psem);
gfxThreadHandle gfxThreadCreate(void *stackarea, size_t stacksz, threadpriority_t prio, DECLARE_THREAD_FUNCTION((*fn),p), void *param);
threadreturn_t gfxThreadWait(gfxThreadHandle thread);
gfxThreadHandle gfxThreadMe(void);
#ifdef __cplusplus
}
#endif
/*===========================================================================*/
/* Use the generic thread handling and heap handling */
/*===========================================================================*/
#define GOS_NEED_X_THREADS TRUE
#define GOS_NEED_X_HEAP TRUE
#include "gos_x_threads.h"
#include "gos_x_heap.h"
#endif /* GFX_USE_OS_RAW32 */
#endif /* _GOS_RAW32_H */

View File

@ -26,7 +26,8 @@ void _gosInit(void)
{
#if !GFX_NO_OS_INIT
#error "GOS: Operating System initialization for RawRTOS is not yet implemented in uGFX. Please set GFX_NO_OS_INIT to TRUE in your gfxconf.h"
#else
#endif
#if !GFX_OS_INIT_NO_WARNING
#warning "GOS: Operating System initialization has been turned off. Make sure you call raw_os_start() before gfxInit() in your application!"
#endif
}

View File

@ -0,0 +1,195 @@
/*
* This file is subject to the terms of the GFX License. If a copy of
* the license was not distributed with this file, you can obtain one at:
*
* http://ugfx.org/license.html
*/
#include "gfx.h"
#if GOS_NEED_X_HEAP
#include <string.h> // Prototype for memcpy()
#if GFX_OS_HEAP_SIZE == 0
#include <stdlib.h> // Prototype for malloc(), realloc() and free()
void _gosHeapInit(void) {
}
void *gfxAlloc(size_t sz) {
return malloc(sz);
}
void *gfxRealloc(void *ptr, size_t oldsz, size_t newsz) {
(void) oldsz;
return realloc(ptr, newsz);
}
void gfxFree(void *ptr) {
free(ptr);
}
#else
// Slot structure - user memory follows
typedef struct memslot {
struct memslot *next; // The next memslot
size_t sz; // Includes the size of this memslot.
} memslot;
// Free Slot - immediately follows the memslot structure
typedef struct freeslot {
memslot *nextfree; // The next free slot
} freeslot;
#define GetSlotSize(sz) ((((sz) + (sizeof(freeslot) - 1)) & ~(sizeof(freeslot) - 1)) + sizeof(memslot))
#define NextFree(pslot) ((freeslot *)Slot2Ptr(pslot))->nextfree
#define Ptr2Slot(p) ((memslot *)(p) - 1)
#define Slot2Ptr(pslot) ((pslot)+1)
static memslot * firstSlot;
static memslot * lastSlot;
static memslot * freeSlots;
static char heap[GFX_OS_HEAP_SIZE];
void _gosHeapInit(void) {
lastSlot = 0;
gfxAddHeapBlock(heap, GFX_OS_HEAP_SIZE);
}
void gfxAddHeapBlock(void *ptr, size_t sz) {
if (sz < sizeof(memslot)+sizeof(freeslot))
return;
if (lastSlot)
lastSlot->next = (memslot *)ptr;
else
firstSlot = lastSlot = freeSlots = (memslot *)ptr;
lastSlot->next = 0;
lastSlot->sz = sz;
NextFree(lastSlot) = 0;
}
void *gfxAlloc(size_t sz) {
register memslot *prev, *p, *new;
if (!sz) return 0;
sz = GetSlotSize(sz);
for (prev = 0, p = freeSlots; p != 0; prev = p, p = NextFree(p)) {
// Loop till we have a block big enough
if (p->sz < sz)
continue;
// Can we save some memory by splitting this block?
if (p->sz >= sz + sizeof(memslot)+sizeof(freeslot)) {
new = (memslot *)((char *)p + sz);
new->next = p->next;
p->next = new;
new->sz = p->sz - sz;
p->sz = sz;
if (lastSlot == p)
lastSlot = new;
NextFree(new) = NextFree(p);
NextFree(p) = new;
}
// Remove it from the free list
if (prev)
NextFree(prev) = NextFree(p);
else
freeSlots = NextFree(p);
// Return the result found
return Slot2Ptr(p);
}
// No slots large enough
return 0;
}
void *gfxRealloc(void *ptr, size_t oldsz, size_t sz) {
register memslot *prev, *p, *new;
(void) oldsz;
if (!ptr)
return gfxAlloc(sz);
if (!sz) {
gfxFree(ptr);
return 0;
}
p = Ptr2Slot(ptr);
sz = GetSlotSize(sz);
// If the next slot is free (and contiguous) merge it into this one
if ((char *)p + p->sz == (char *)p->next) {
for (prev = 0, new = freeSlots; new != 0; prev = new, new = NextFree(new)) {
if (new == p->next) {
p->next = new->next;
p->sz += new->sz;
if (prev)
NextFree(prev) = NextFree(new);
else
freeSlots = NextFree(new);
if (lastSlot == new)
lastSlot = p;
break;
}
}
}
// If this block is large enough we are nearly done
if (sz < p->sz) {
// Can we save some memory by splitting this block?
if (p->sz >= sz + sizeof(memslot)+sizeof(freeslot)) {
new = (memslot *)((char *)p + sz);
new->next = p->next;
p->next = new;
new->sz = p->sz - sz;
p->sz = sz;
if (lastSlot == p)
lastSlot = new;
NextFree(new) = freeSlots;
freeSlots = new;
}
return Slot2Ptr(p);
}
// We need to do this the hard way
if ((new = gfxAlloc(sz)))
return 0;
memcpy(new, ptr, p->sz - sizeof(memslot));
gfxFree(ptr);
return new;
}
void gfxFree(void *ptr) {
register memslot *prev, *p, *new;
if (!ptr)
return;
p = Ptr2Slot(ptr);
// If the next slot is free (and contiguous) merge it into this one
if ((char *)p + p->sz == (char *)p->next) {
for (prev = 0, new = freeSlots; new != 0; prev = new, new = NextFree(new)) {
if (new == p->next) {
p->next = new->next;
p->sz += new->sz;
if (prev)
NextFree(prev) = NextFree(new);
else
freeSlots = NextFree(new);
if (lastSlot == new)
lastSlot = p;
break;
}
}
}
// Add it into the free chain
NextFree(p) = freeSlots;
freeSlots = p;
}
#endif
#endif /* GOS_NEED_X_HEAP */

View File

@ -0,0 +1,62 @@
/*
* This file is subject to the terms of the GFX License. If a copy of
* the license was not distributed with this file, you can obtain one at:
*
* http://ugfx.org/license.html
*/
/**
* The raw32 GOS implementation supports any 32 bit processor with or without an
* underlying operating system. It uses cooperative multi-tasking. Be careful
* when writing device drivers not to disturb the assumptions this creates by performing
* call-backs to uGFX code unless you define the INTERRUPTS_OFF() and INTERRUPTS_ON() macros.
* It still requires some C runtime library support...
* enough startup to initialise the stack, interrupts, static data etc and call main().
* setjmp() and longjmp() - for threading
* memcpy() - for heap and threading
* malloc(), realloc and free() - if GFX_OS_HEAP_SIZE == 0
*
* You must also define the following routines in your own code so that timing functions will work...
* systemticks_t gfxSystemTicks(void);
* systemticks_t gfxMillisecondsToTicks(delaytime_t ms);
*/
#ifndef _GOS_X_HEAP_H
#define _GOS_X_HEAP_H
#if GOS_NEED_X_HEAP
/*===========================================================================*/
/* Special Macros */
/*===========================================================================*/
/**
* @brief Set the maximum size of the heap.
* @note If set to 0 then the C runtime library malloc() and free() are used.
*/
#ifndef GFX_OS_HEAP_SIZE
#define GFX_OS_HEAP_SIZE 0
#endif
/*===========================================================================*/
/* Type definitions */
/*===========================================================================*/
#ifdef __cplusplus
extern "C" {
#endif
#if GFX_OS_HEAP_SIZE != 0
void gfxAddHeapBlock(void *ptr, size_t sz);
#endif
void *gfxAlloc(size_t sz);
void *gfxRealloc(void *ptr, size_t oldsz, size_t newsz);
void gfxFree(void *ptr);
#ifdef __cplusplus
}
#endif
#endif /* GOS_NEED_X_HEAP */
#endif /* _GOS_X_HEAP_H */

View File

@ -0,0 +1,672 @@
/*
* This file is subject to the terms of the GFX License. If a copy of
* the license was not distributed with this file, you can obtain one at:
*
* http://ugfx.org/license.html
*/
#include "gfx.h"
#if GOS_NEED_X_THREADS
/*********************************************************
* Semaphores and critical region functions
*********************************************************/
#if !defined(INTERRUPTS_OFF) || !defined(INTERRUPTS_ON)
#define INTERRUPTS_OFF()
#define INTERRUPTS_ON()
#endif
void gfxSystemLock(void) {
INTERRUPTS_OFF();
}
void gfxSystemUnlock(void) {
INTERRUPTS_ON();
}
void gfxMutexInit(gfxMutex *pmutex) {
pmutex[0] = 0;
}
void gfxMutexEnter(gfxMutex *pmutex) {
INTERRUPTS_OFF();
while (pmutex[0]) {
INTERRUPTS_ON();
gfxYield();
INTERRUPTS_OFF();
}
pmutex[0] = 1;
INTERRUPTS_ON();
}
void gfxMutexExit(gfxMutex *pmutex) {
pmutex[0] = 0;
}
void gfxSemInit(gfxSem *psem, semcount_t val, semcount_t limit) {
psem->cnt = val;
psem->limit = limit;
}
bool_t gfxSemWait(gfxSem *psem, delaytime_t ms) {
systemticks_t starttm, delay;
// Convert our delay to ticks
starttm = 0;
switch (ms) {
case TIME_IMMEDIATE:
delay = TIME_IMMEDIATE;
break;
case TIME_INFINITE:
delay = TIME_INFINITE;
break;
default:
delay = gfxMillisecondsToTicks(ms);
if (!delay) delay = 1;
starttm = gfxSystemTicks();
}
INTERRUPTS_OFF();
while (psem->cnt <= 0) {
INTERRUPTS_ON();
// Check if we have exceeded the defined delay
switch (delay) {
case TIME_IMMEDIATE:
return FALSE;
case TIME_INFINITE:
break;
default:
if (gfxSystemTicks() - starttm >= delay)
return FALSE;
break;
}
gfxYield();
INTERRUPTS_OFF();
}
psem->cnt--;
INTERRUPTS_ON();
return TRUE;
}
bool_t gfxSemWaitI(gfxSem *psem) {
if (psem->cnt <= 0)
return FALSE;
psem->cnt--;
return TRUE;
}
void gfxSemSignal(gfxSem *psem) {
INTERRUPTS_OFF();
gfxSemSignalI(psem);
INTERRUPTS_ON();
}
void gfxSemSignalI(gfxSem *psem) {
if (psem->cnt < psem->limit)
psem->cnt++;
}
/*********************************************************
* Sleep functions
*********************************************************/
void gfxSleepMilliseconds(delaytime_t ms) {
systemticks_t starttm, delay;
// Safety first
switch (ms) {
case TIME_IMMEDIATE:
return;
case TIME_INFINITE:
while(1)
gfxYield();
return;
}
// Convert our delay to ticks
delay = gfxMillisecondsToTicks(ms);
starttm = gfxSystemTicks();
do {
gfxYield();
} while (gfxSystemTicks() - starttm < delay);
}
void gfxSleepMicroseconds(delaytime_t ms) {
systemticks_t starttm, delay;
// Safety first
switch (ms) {
case TIME_IMMEDIATE:
return;
case TIME_INFINITE:
while(1)
gfxYield();
return;
}
// Convert our delay to ticks
delay = gfxMillisecondsToTicks(ms/1000);
starttm = gfxSystemTicks();
do {
gfxYield();
} while (gfxSystemTicks() - starttm < delay);
}
/*********************************************************
* Threading functions
*********************************************************/
/** For each scheduler the following need to be defined...
*
* void _gfxThreadsInit(void); - Initialise the scheduler
* void _gfxStartThread(thread *oldt, thread *newt); - Start a new thread
* void _gfxTaskSwitch(thread *oldt, thread *newt); - Switch to a different thread
*
*/
typedef struct thread {
struct thread * next; // Next thread
int flags; // Flags
#define FLG_THD_ALLOC 0x0001
#define FLG_THD_MAIN 0x0002
#define FLG_THD_DEAD 0x0004
#define FLG_THD_WAIT 0x0008
size_t size; // Size of the thread stack (including this structure)
threadreturn_t (*fn)(void *param); // Thread function
void * param; // Parameter for the thread function
void * cxt; // The current thread context.
} thread;
typedef struct threadQ {
thread *head;
thread *tail;
} threadQ;
static threadQ readyQ; // The list of ready threads
static threadQ deadQ; // Where we put threads waiting to be deallocated
static thread * current; // The current running thread
static thread mainthread; // The main thread context
#if GFX_CPU == GFX_CPU_UNKNOWN
#include <string.h> // Prototype for memcpy()
#include <setjmp.h>
/**
* Some compilers define a _setjmp() and a setjmp().
* The difference between them is that setjmp() saves the signal masks.
* That is of no use to us so we prefer to use the _setjmp() methods.
* If they don't exist compile them to be the standard setjmp() function.
* Similarly for longjmp().
*/
#if (!defined(setjmp) && !defined(_setjmp)) || defined(__KEIL__) || defined(__C51__)
#define CXT_SAVE setjmp
#else
#define CXT_SAVE _setjmp
#endif
#if (!defined(longjmp) && !defined(_longjmp)) || defined(__KEIL__) || defined(__C51__)
#define CXT_RESTORE longjmp
#else
#define CXT_RESTORE _longjmp
#endif
// A place to store the main thread context.
// All other threads will store the context directly after the thread structure (as part of the stack space).
static jmp_buf maincxt;
/**
* There are some compilers we know how they store the jmpbuf. For those
* we can use the constant macro definitions. For others we have to "auto-detect".
* Auto-detection is hairy and there is no guarantee it will work on all architectures.
* For those it doesn't - read the compiler manuals and the library source code to
* work out the correct macro values.
* You can use the debugger to work out the values for your compiler and put them here.
* Defining these macros as constant values makes the system behaviour guaranteed but also
* makes your code compiler and cpu architecture dependent. It also saves a heap of code
* and a few bytes of RAM.
*
* MACROS:
*
* AUTO_DETECT_STACKFRAME TRUE/FALSE - TRUE to auto-detect stack frame structure
* STACK_DIR_UP Macro/bool_t - TRUE if the stack grows up instead of down
* MASK1 Macro/uint32_t - The 1st mask of jmp_buf elements that need relocation
* MASK2 Macro/uint32_t - The 2nd mask of jmp_buf elements that need relocation
* STACK_BASE Macro/size_t - The base of the stack frame relative to the local variables
* _gfxThreadsInit() Macro/Function - Initialise the scheduler
*
*/
#if GFX_COMPILER == GFX_COMPILER_MINGW32
#define AUTO_DETECT_STACKFRAME FALSE
#define STACK_DIR_UP FALSE
#define MASK1 0x00000011
#define MASK2 0x00000000
#define STACK_BASE 12
#define _gfxThreadsInit() mainthread.cxt = maincxt
#else
// Use auto-detection of the stack frame format
// Assumes all the relevant stuff to be relocated is in the first 256 bytes of the jmpbuf.
#define AUTO_DETECT_STACKFRAME TRUE
#define STACK_DIR_UP stackdirup // TRUE if the stack grow up instead of down
#define MASK1 jmpmask1 // The 1st mask of jmp_buf elements that need relocation
#define MASK2 jmpmask2 // The 2nd mask of jmp_buf elements that need relocation
#define STACK_BASE stackbase // The base of the stack frame relative to the local variables
// The structure for the saved stack frame information
typedef struct saveloc {
char * localptr;
jmp_buf cxt;
} saveloc;
static bool_t stackdirup;
static uint32_t jmpmask1;
static uint32_t jmpmask2;
static size_t stackbase;
static saveloc *pframeinfo;
// These two functions are not static to prevent the compiler removing them as functions
void _gfxGetStackState(void) {
char *c;
pframeinfo->localptr = (char *)&c;
CXT_SAVE(pframeinfo->cxt);
}
void _gfxGetStackStateInFn(void) {
pframeinfo++;
_gfxGetStackState();
pframeinfo--;
}
static void _gfxThreadsInit(void) {
uint32_t i;
char ** pout;
char ** pin;
size_t diff;
char * framebase;
saveloc tmpsaveloc[2];
// Create the main thread context
mainthread.cxt = maincxt;
// Allocate a buffer to store our test data
pframeinfo = tmpsaveloc;
// Get details of the stack frame from within a function
_gfxGetStackStateInFn();
// Get details of the stack frame outside the function
_gfxGetStackState();
/* Work out the frame entries to relocate by treating the jump buffer as an array of pointers */
stackdirup = pframeinfo[1].localptr > pframeinfo[0].localptr;
pout = (char **)pframeinfo[0].cxt;
pin = (char **)pframeinfo[1].cxt;
diff = pframeinfo[0].localptr - pframeinfo[1].localptr;
framebase = pframeinfo[0].localptr;
jmpmask1 = jmpmask2 = 0;
for (i = 0; i < sizeof(jmp_buf)/sizeof(char *); i++, pout++, pin++) {
if ((size_t)(*pout - *pin) == diff) {
if (i < 32)
jmpmask1 |= 1 << i;
else
jmpmask2 |= 1 << (i-32);
if (stackdirup) {
if (framebase > *pout)
framebase = *pout;
} else {
if (framebase < *pout)
framebase = *pout;
}
}
}
stackbase = stackdirup ? (pframeinfo[0].localptr - framebase) : (framebase - pframeinfo[0].localptr);
}
#endif
// Move the stack frame and relocate the context data
static void _gfxAdjustCxt(thread *t) {
char ** s;
char * nf;
int diff;
uint32_t i;
// Copy the stack frame
#if AUTO_DETECT_STACKFRAME
if (STACK_DIR_UP) { // Stack grows up
nf = (char *)(t) + sizeof(thread) + sizeof(jmp_buf) + stackbase;
memcpy(t+1, (char *)&s - stackbase, stackbase+sizeof(char *));
} else { // Stack grows down
nf = (char *)(t) + t->size - (stackbase + sizeof(char *));
memcpy(nf, &s, stackbase+sizeof(char *));
}
#elif STACK_DIR_UP
// Stack grows up
nf = (char *)(t) + sizeof(thread) + sizeof(jmp_buf) + stackbase;
memcpy(t+1, (char *)&s - stackbase, stackbase+sizeof(char *));
#else
// Stack grows down
nf = (char *)(t) + t->size - (stackbase + sizeof(char *));
memcpy(nf, &s, stackbase+sizeof(char *));
#endif
// Relocate the context data
s = (char **)(t->cxt);
diff = nf - (char *)&s;
// Relocate the elements we know need to be relocated
for (i = MASK1; i ; i >>= 1, s++) {
if ((i & 1))
*s += diff;
}
#ifdef MASK2
s = (char **)(t->cxt)+32;
for (i = MASK2; i ; i >>= 1, s++) {
if ((i & 1))
*s += diff;
}
#endif
}
static void _gfxXSwitch(thread *oldt, thread *newt, bool_t doBuildFrame) {
// Save the old context
if (CXT_SAVE(oldt->cxt)) return;
// Do we need to build a new context?
if (doBuildFrame) {
// Save our existing context as a starting point for the new context
newt->cxt = newt+1;
if (CXT_SAVE(newt->cxt)) {
// We are now running the new thread
// We can't use any of the above function parameters here
// as we are on a different stack.
// Run the users function.
gfxThreadExit(current->fn(current->param));
// We never get here as gfxThreadExit() never returns
}
// Adjust the new context so the stack references are correct
_gfxAdjustCxt(newt);
}
// Start the new context
CXT_RESTORE(newt->cxt, 1);
}
#define _gfxTaskSwitch(oldt, newt) _gfxXSwitch(oldt, newt, FALSE)
#define _gfxStartThread(oldt, newt) _gfxXSwitch(oldt, newt, TRUE)
#elif GFX_CPU == GFX_CPU_CORTEX_M0 || GFX_CPU == GFX_CPU_CORTEX_M1
// Use the EABI calling standard (ARM's AAPCS) - Save r4 - r11
// The context is saved at the current stack location and a pointer is maintained in the thread structure.
#define _gfxThreadsInit()
static __attribute__((pcs("aapcs"),naked)) void _gfxTaskSwitch(thread *oldt, thread *newt) {
__asm__ volatile ( "push {r4, r5, r6, r7, lr} \n\t"
"mov r4, r8 \n\t"
"mov r5, r9 \n\t"
"mov r6, r10 \n\t"
"mov r7, r11 \n\t"
"push {r4, r5, r6, r7} \n\t"
"str sp, %[oldtcxt] \n\t"
"ldr sp, %[newtcxt] \n\t"
"pop {r4, r5, r6, r7} \n\t"
"mov r8, r4 \n\t"
"mov r9, r5 \n\t"
"mov r10, r6 \n\t"
"mov r11, r7 \n\t"
"pop {r4, r5, r6, r7, pc} \n\t"
: [newtcxt] "=m" (newt->cxt)
: [oldtcxt] "m" (oldt->cxt)
: "memory");
}
static __attribute__((pcs("aapcs"),naked)) void _gfxStartThread(thread *oldt, thread *newt) {
newt->cxt = (char *)newt + newt->size;
__asm__ volatile ( "push {r4, r5, r6, r7, r8, r9, r10, r11, lr} \n\t" // save current context
"str sp, %[oldtcxt] \n\t" // save context pointer
"ldr sp, %[newtcxt] \n\t" // load new context pointer
: [newtcxt] "=m" (newt->cxt)
: [oldtcxt] "m" (oldt->cxt)
: "memory");
// Run the users function
gfxThreadExit(current->fn(current->param));
}
#elif GFX_CPU == GFX_CPU_CORTEX_M3 || GFX_CPU == GFX_CPU_CORTEX_M4 || GFX_CPU == GFX_CPU_CORTEX_M7
// Use the EABI calling standard (ARM's AAPCS) - Save r4 - r11
// The context is saved at the current stack location and a pointer is maintained in the thread structure.
#if CORTEX_USE_FPU
#warning "GOS Threads: You have specified GFX_CPU=GFX_CPU_CORTX_M? with no hardware floating point support but CORTEX_USE_FPU is TRUE. Try using GFX_CPU_GFX_CPU_CORTEX_M?_FP instead"
#endif
#define _gfxThreadsInit()
static __attribute__((pcs("aapcs"),naked)) void _gfxTaskSwitch(thread *oldt, thread *newt) {
__asm__ volatile ( "push {r4, r5, r6, r7, r8, r9, r10, r11, lr} \n\t"
"str sp, %[oldtcxt] \n\t"
"ldr sp, %[newtcxt] \n\t"
"pop {r4, r5, r6, r7, r8, r9, r10, r11, pc} \n\t"
: [newtcxt] "=m" (newt->cxt)
: [oldtcxt] "m" (oldt->cxt)
: "memory");
}
static __attribute__((pcs("aapcs"),naked)) void _gfxStartThread(thread *oldt, thread *newt) {
newt->cxt = (char *)newt + newt->size;
__asm__ volatile ( "push {r4, r5, r6, r7, r8, r9, r10, r11, lr} \n\t"
"str sp, %[oldtcxt] \n\t"
"ldr sp, %[newtcxt] \n\t"
: [newtcxt] "=m" (newt->cxt)
: [oldtcxt] "m" (oldt->cxt)
: "memory");
// Run the users function
gfxThreadExit(current->fn(current->param));
}
#elif GFX_CPU == GFX_CPU == GFX_CPU_CORTEX_M4_FP || GFX_CPU == GFX_CPU_CORTEX_M7_FP
// Use the EABI calling standard (ARM's AAPCS) - Save r4 - r11 and floating point
// The context is saved at the current stack location and a pointer is maintained in the thread structure.
#if !CORTEX_USE_FPU
#warning "GOS Threads: You have specified GFX_CPU=GFX_CPU_CORTX_M?_FP with hardware floating point support but CORTEX_USE_FPU is FALSE. Try using GFX_CPU_GFX_CPU_CORTEX_M? instead"
#endif
#define _gfxThreadsInit()
static __attribute__((pcs("aapcs-vfp"),naked)) void _gfxTaskSwitch(thread *oldt, thread *newt) {
__asm__ volatile ( "push {r4, r5, r6, r7, r8, r9, r10, r11, lr} \n\t"
"vpush {s16-s31} \n\t"
"str sp, %[oldtcxt] \n\t"
"ldr sp, %[newtcxt] \n\t"
"vpop {s16-s31} \n\t"
"pop {r4, r5, r6, r7, r8, r9, r10, r11, pc} \n\t"
: [newtcxt] "=m" (newt->cxt)
: [oldtcxt] "m" (oldt->cxt)
: "memory");
}
static __attribute__((pcs("aapcs-vfp"),naked)) void _gfxStartThread(thread *oldt, thread *newt) {
newt->cxt = (char *)newt + newt->size;
__asm__ volatile ( "push {r4, r5, r6, r7, r8, r9, r10, r11, lr} \n\t"
"vpush {s16-s31} \n\t"
"str sp, %[oldtcxt] \n\t"
"ldr sp, %[newtcxt] \n\t"
: [newtcxt] "=m" (newt->cxt)
: [oldtcxt] "m" (oldt->cxt)
: "memory");
// Run the users function
gfxThreadExit(current->fn(current->param));
}
#else
#error "GOS Threads: Unsupported Scheduler. Try setting GFX_CPU = GFX_CPU_UNKNOWN"
#endif
static void Qinit(threadQ * q) {
q->head = q->tail = 0;
}
static void Qadd(threadQ * q, thread *t) {
t->next = 0;
if (q->head) {
q->tail->next = t;
q->tail = t;
} else
q->head = q->tail = t;
}
static thread *Qpop(threadQ * q) {
struct thread * t;
if (!q->head)
return 0;
t = q->head;
q->head = t->next;
return t;
}
void _gosThreadsInit(void) {
Qinit(&readyQ);
mainthread.next = 0;
mainthread.size = sizeof(thread);
mainthread.flags = FLG_THD_MAIN;
mainthread.fn = 0;
mainthread.param = 0;
_gfxThreadsInit();
current = &mainthread;
}
gfxThreadHandle gfxThreadMe(void) {
return (gfxThreadHandle)current;
}
// Check if there are dead processes to deallocate
static void cleanUpDeadThreads(void) {
thread *p;
while ((p = Qpop(&deadQ)))
gfxFree(p);
}
void gfxYield(void) {
thread *me;
// Clean up zombies
cleanUpDeadThreads();
// Is there another thread to run?
if (!readyQ.head)
return;
Qadd(&readyQ, me = current);
current = Qpop(&readyQ);
_gfxTaskSwitch(me, current);
}
// This routine is not currently public - but it could be.
void gfxThreadExit(threadreturn_t ret) {
thread *me;
// Save the results in case someone is waiting
me = current;
me->param = (void *)ret;
me->flags |= FLG_THD_DEAD;
// Add us to the dead list if we need deallocation as we can't free ourselves.
// If someone is waiting on the thread they will do the cleanup.
if ((me->flags & (FLG_THD_ALLOC|FLG_THD_WAIT)) == FLG_THD_ALLOC)
Qadd(&deadQ, me);
// Set the next thread. Exit if it was the last thread
if (!(current = Qpop(&readyQ)))
gfxExit();
// Switch to the new thread
_gfxTaskSwitch(me, current);
// We never get back here as we didn't re-queue ourselves
}
gfxThreadHandle gfxThreadCreate(void *stackarea, size_t stacksz, threadpriority_t prio, DECLARE_THREAD_FUNCTION((*fn),p), void *param) {
thread * t;
thread * me;
(void) prio;
// Ensure we have a minimum stack size
if (stacksz < sizeof(thread)+64) {
stacksz = sizeof(thread)+64;
stackarea = 0;
}
if (stackarea) {
t = (thread *)stackarea;
t->flags = 0;
} else {
t = (thread *)gfxAlloc(stacksz);
if (!t)
return 0;
t->flags = FLG_THD_ALLOC;
}
t->size = stacksz;
t->fn = fn;
t->param = param;
// Add the current thread to the queue because we are starting a new thread.
me = current;
Qadd(&readyQ, me);
current = t;
_gfxStartThread(me, t);
// Return the new thread handle
return t;
}
threadreturn_t gfxThreadWait(gfxThreadHandle th) {
thread * t;
t = th;
if (t == current)
return -1;
// Mark that we are waiting
t->flags |= FLG_THD_WAIT;
// Wait for the thread to die
while(!(t->flags & FLG_THD_DEAD))
gfxYield();
// Unmark
t->flags &= ~FLG_THD_WAIT;
// Clean up resources if needed
if (t->flags & FLG_THD_ALLOC)
gfxFree(t);
// Return the status left by the dead process
return (threadreturn_t)t->param;
}
#endif /* GFX_USE_OS_RAW32 */

View File

@ -0,0 +1,103 @@
/*
* This file is subject to the terms of the GFX License. If a copy of
* the license was not distributed with this file, you can obtain one at:
*
* http://ugfx.org/license.html
*/
/**
* This threading implementation supports most 32 bit processors with or without an
* underlying operating system. It uses cooperative multi-tasking. Be careful
* when writing device drivers not to disturb the assumptions this creates by performing
* call-backs from interrupt handlers to uGFX code unless you define the INTERRUPTS_OFF()
* and INTERRUPTS_ON() macros.
* It still requires some C runtime library support for the setjmp implementation...
* setjmp() and longjmp() - for threading
* memcpy() - for heap and threading
*
* You must also define the following routines in your own code so that timing functions will work...
* systemticks_t gfxSystemTicks(void);
* systemticks_t gfxMillisecondsToTicks(delaytime_t ms);
*/
#ifndef _GOS_X_THREADS_H
#define _GOS_X_THREADS_H
#if GOS_NEED_X_THREADS
typedef uint32_t delaytime_t;
typedef uint32_t systemticks_t;
typedef short semcount_t;
typedef int threadreturn_t;
typedef int threadpriority_t;
#define DECLARE_THREAD_FUNCTION(fnName, param) threadreturn_t fnName(void *param)
#define DECLARE_THREAD_STACK(name, sz) uint8_t name[sz];
#define TIME_IMMEDIATE 0
#define TIME_INFINITE ((delaytime_t)-1)
#define MAX_SEMAPHORE_COUNT 0x7FFF
#define LOW_PRIORITY 0
#define NORMAL_PRIORITY 1
#define HIGH_PRIORITY 2
typedef struct {
semcount_t cnt;
semcount_t limit;
} gfxSem;
typedef uint32_t gfxMutex;
typedef void * gfxThreadHandle;
#ifdef __cplusplus
extern "C" {
#endif
// Required timing functions - supplied by the user or the operating system
systemticks_t gfxSystemTicks(void);
systemticks_t gfxMillisecondsToTicks(delaytime_t ms);
// Sleep Functions
void gfxSleepMilliseconds(delaytime_t ms);
void gfxSleepMicroseconds(delaytime_t ms);
void gfxYield(void);
// System Locking
void gfxSystemLock(void);
void gfxSystemUnlock(void);
// Mutexes
void gfxMutexInit(gfxMutex *pmutex);
#define gfxMutexDestroy(pmutex)
void gfxMutexEnter(gfxMutex *pmutex);
void gfxMutexExit(gfxMutex *pmutex);
// Semaphores
void gfxSemInit(gfxSem *psem, semcount_t val, semcount_t limit);
#define gfxSemDestroy(psem)
bool_t gfxSemWait(gfxSem *psem, delaytime_t ms);
bool_t gfxSemWaitI(gfxSem *psem);
void gfxSemSignal(gfxSem *psem);
void gfxSemSignalI(gfxSem *psem);
// Deprecated Semaphore functions (they still work here)
#define gfxSemCounter(psem) ((psem)->cnt)
#define gfxSemCounterI(psem) ((psem)->cnt)
// Threads
gfxThreadHandle gfxThreadCreate(void *stackarea, size_t stacksz, threadpriority_t prio, DECLARE_THREAD_FUNCTION((*fn),p), void *param);
#define gfxThreadClose(thread)
threadreturn_t gfxThreadWait(gfxThreadHandle thread);
gfxThreadHandle gfxThreadMe(void);
/** The following is not part of the public ugfx API has some operating systems
* simply do not provide this capability.
* For RAW32 we need it anyway so we might as well declare it here.
*/
void gfxThreadExit(threadreturn_t ret);
#ifdef __cplusplus
}
#endif
#endif /* GOS_NEED_X_THREADS */
#endif /* _GOS_X_THREADS_H */