ugfx/drivers/lcd/s6d1121_lld.c
Kumar Abhishek 24648e2342 Implemented writeStream functions for S6D1121
Nomenclature change lld_ prefix to low level functions
2012-06-19 21:40:13 +05:30

355 lines
8.0 KiB
C

#include "s6d1121_lld.h"
#ifdef LCD_USE_S6D1121
#define LCD_RST_LOW palClearPad(LCD_RST_GPIO, LCD_RST_PIN)
#define LCD_RST_HIGH palSetPad(LCD_RST_GPIO, LCD_RST_PIN)
#define LCD_CS_LOW palClearPad(LCD_CS_GPIO, LCD_CS_PIN)
#define LCD_CS_HIGH palSetPad(LCD_CS_GPIO, LCD_CS_PIN)
#define LCD_RS_LOW palClearPad(LCD_RS_GPIO, LCD_RS_PIN)
#define LCD_RS_HIGH palSetPad(LCD_RS_GPIO, LCD_RS_PIN)
#define LCD_RD_LOW palClearPad(LCD_RD_GPIO, LCD_RD_PIN)
#define LCD_RD_HIGH palSetPad(LCD_RD_GPIO, LCD_RD_PIN)
#define LCD_WR_LOW palClearPad(LCD_WR_GPIO, LCD_WR_PIN)
#define LCD_WR_HIGH palSetPad(LCD_WR_GPIO, LCD_WR_PIN)
#define LCD_BL_LOW palClearPad(LCD_BL_GPIO, LCD_BL_PIN)
#define LCD_BL_HIGH palSetPad(LCD_BL_GPIO, LCD_BL_PIN)
static uint8_t orientation;
extern uint16_t lcd_width, lcd_height;
static inline void lld_lcddelay(void)
{
asm volatile ("nop");
asm volatile ("nop");
}
static inline void lld_lcdwrite(uint16_t db)
{
LCD_D4_GPIO->BSRR.W=((~db&0xFFF0)<<16)|(db&0xFFF0);
LCD_D0_GPIO->BSRR.W=((~db&0x000F)<<16)|(db&0x000F);
LCD_WR_LOW;
lld_lcddelay();
LCD_WR_HIGH;
}
static __inline uint16_t lld_lcdReadData(void) {
uint16_t value=0;
LCD_RS_HIGH;
LCD_WR_HIGH;
LCD_RD_LOW;
#ifndef STM32F4XX
// change pin mode to digital input
LCD_DATA_PORT->CRH = 0x47444444;
LCD_DATA_PORT->CRL = 0x47444444;
#else
#endif
// value = palReadPort(LCD_DATA_PORT); // dummy
// value = palReadPort(LCD_DATA_PORT);
#ifndef STM32F4XX
// change pin mode back to digital output
LCD_DATA_PORT->CRH = 0x33333333;
LCD_DATA_PORT->CRL = 0x33333333;
#else
#endif
LCD_RD_HIGH;
return value;
}
static __inline uint16_t lld_lcdReadReg(uint16_t lcdReg) {
uint16_t lcdRAM;
LCD_CS_LOW;
LCD_RS_LOW;
lld_lcdwrite(lcdReg);
LCD_RS_HIGH;
lcdRAM = lld_lcdReadData();
LCD_CS_HIGH;
return lcdRAM;
}
void lld_lcdWriteIndex(uint16_t lcdReg) {
LCD_RS_LOW;
lld_lcdwrite(lcdReg);
LCD_RS_HIGH;
}
void lld_lcdWriteData(uint16_t lcdData) {
lld_lcdwrite(lcdData);
}
void lcdWriteReg(uint16_t lcdReg, uint16_t lcdRegValue) {
LCD_CS_LOW;
lld_lcdWriteIndex(lcdReg);
lld_lcdWriteData(lcdRegValue);
LCD_CS_HIGH;
}
void lld_lcdInit(void) {
// ChibiOS HAL has a nice and precise delay function,
// halPolledDelay(US2RTT(x)); or halPolledDelay(MS2RTT(x));
// Why Not use it?
// IO Default Configurations
palSetPadMode(LCD_CS_GPIO, LCD_CS_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
palSetPadMode(LCD_WR_GPIO, LCD_WR_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
palSetPadMode(LCD_RD_GPIO, LCD_RD_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
palSetPadMode(LCD_RST_GPIO, LCD_RST_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
palSetPadMode(LCD_RS_GPIO, LCD_RS_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
palSetPadMode(LCD_BL_GPIO, LCD_BL_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
palSetGroupMode(LCD_D0_GPIO, 0x0000000F, 0, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
palSetGroupMode(LCD_D4_GPIO, 0x0000FFF0, 0, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
LCD_CS_HIGH;
LCD_RST_HIGH;
LCD_RD_HIGH;
LCD_WR_HIGH;
LCD_BL_LOW;
// A Good idea to reset the module before using
LCD_RST_LOW;
halPolledDelay(MS2RTT(2));
LCD_RST_HIGH; // Hardware Reset
halPolledDelay(MS2RTT(2));
lcdWriteReg(0x11,0x2004);
lcdWriteReg(0x13,0xCC00);
lcdWriteReg(0x15,0x2600);
lcdWriteReg(0x14,0x252A);
lcdWriteReg(0x12,0x0033);
lcdWriteReg(0x13,0xCC04);
halPolledDelay(MS2RTT(1));
lcdWriteReg(0x13,0xCC06);
halPolledDelay(MS2RTT(1));
lcdWriteReg(0x13,0xCC4F);
halPolledDelay(MS2RTT(1));
lcdWriteReg(0x13,0x674F);
lcdWriteReg(0x11,0x2003);
halPolledDelay(MS2RTT(1));
// Gamma Setting
lcdWriteReg(0x30,0x2609);
lcdWriteReg(0x31,0x242C);
lcdWriteReg(0x32,0x1F23);
lcdWriteReg(0x33,0x2425);
lcdWriteReg(0x34,0x2226);
lcdWriteReg(0x35,0x2523);
lcdWriteReg(0x36,0x1C1A);
lcdWriteReg(0x37,0x131D);
lcdWriteReg(0x38,0x0B11);
lcdWriteReg(0x39,0x1210);
lcdWriteReg(0x3A,0x1315);
lcdWriteReg(0x3B,0x3619);
lcdWriteReg(0x3C,0x0D00);
lcdWriteReg(0x3D,0x000D);
lcdWriteReg(0x16,0x0007);
lcdWriteReg(0x02,0x0013);
lcdWriteReg(0x03,0x0003);
lcdWriteReg(0x01,0x0127);
halPolledDelay(MS2RTT(1));
lcdWriteReg(0x08,0x0303);
lcdWriteReg(0x0A,0x000B);
lcdWriteReg(0x0B,0x0003);
lcdWriteReg(0x0C,0x0000);
lcdWriteReg(0x41,0x0000);
lcdWriteReg(0x50,0x0000);
lcdWriteReg(0x60,0x0005);
lcdWriteReg(0x70,0x000B);
lcdWriteReg(0x71,0x0000);
lcdWriteReg(0x78,0x0000);
lcdWriteReg(0x7A,0x0000);
lcdWriteReg(0x79,0x0007);
lcdWriteReg(0x07,0x0051);
halPolledDelay(MS2RTT(1));
lcdWriteReg(0x07,0x0053);
lcdWriteReg(0x79,0x0000);
}
void lld_lcdSetCursor(uint16_t x, uint16_t y) {
if(PORTRAIT) {
lcdWriteReg(0x0020, x);
lcdWriteReg(0x0021, y);
} else if(LANDSCAPE) {
lcdWriteReg(0x0020, y);
lcdWriteReg(0x0021, x);
}
}
static __inline void lld_lcdWriteStreamStart(void) {
#ifdef LCD_USE_GPIO
LCD_CS_LOW;
lld_lcdWriteIndex(0x0022);
#endif
#ifdef LCD_USE_SPI
#endif
#ifdef LCD_USE_FSMC
#endif
}
static __inline void lld_lcdWriteStreamStop(void) {
#ifdef LCD_USE_GPIO
LCD_CS_HIGH;
#endif
#ifdef LCD_USE_SPI
#endif
#ifdef LCD_USE_FSMC
#endif
}
__inline void lld_lcdWriteStream(uint16_t *buffer, uint16_t size) {
uint16_t i;
for(i = 0; i < size; i++) {
lld_lcdwrite(buffer[i]);
}
}
void lld_lcdFillArea(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, uint16_t color) {
uint32_t index = 0, area;
area = ((x1-x0)*(y1-y0));
lld_lcdSetWindow(x0, y0, x1, y1);
lld_lcdWriteStreamStart();
for(index = 0; index < area; index++)
lld_lcdWriteData(color);
lld_lcdWriteStreamStop();
}
// Do not use now, will be fixed in future
void lld_lcdSetOrientation(uint8_t newOrientation) {
orientation = newOrientation;
switch(orientation) {
case portrait:
lcdWriteReg(0x03, 0x03);
lcd_height = SCREEN_HEIGHT;
lcd_width = SCREEN_WIDTH;
break;
case landscape:
// Not implemented yet
lcd_height = SCREEN_WIDTH;
lcd_width = SCREEN_HEIGHT;
break;
case portraitInv:
// Not implemented yet
lcd_height = SCREEN_HEIGHT;
lcd_width = SCREEN_WIDTH;
break;
case landscapeInv:
// Not implemented yet
lcd_height = SCREEN_WIDTH;
lcd_width = SCREEN_HEIGHT;
break;
}
}
void lld_lcdSetWindow(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1) {
switch(lcdGetOrientation()) {
case portrait:
lcdWriteReg(0x46, ((x1-1) << 8) | x0);
lcdWriteReg(0x48, y0);
lcdWriteReg(0x47, y1-1);
break;
case landscape:
lcdWriteReg(0x46, ((x0-1) << 8) | x1);
lcdWriteReg(0x48, x0);
lcdWriteReg(0x47, x1-1);
break;
case portraitInv:
lcdWriteReg(0x46, ((x1-1) << 8) | x0);
lcdWriteReg(0x48, y0);
lcdWriteReg(0x47, y1-1);
break;
case landscapeInv:
lcdWriteReg(0x46, ((y0-1) << 8) | y1);
lcdWriteReg(0x48, x0);
lcdWriteReg(0x47, x1-1);
break;
}
lld_lcdSetCursor(x0, y0);
}
void lld_lcdClear(uint16_t color) {
uint32_t index = 0;
lld_lcdSetCursor(0,0);
LCD_CS_LOW;
lld_lcdWriteIndex(0x0022);
for(index = 0; index < SCREEN_WIDTH * SCREEN_HEIGHT; index++)
lld_lcdWriteData(color);
LCD_CS_HIGH;
}
// Do not use!
uint16_t lld_lcdGetPixelColor(uint16_t x, uint16_t y) {
uint16_t dummy;
lld_lcdSetCursor(x,y);
LCD_CS_LOW;
lld_lcdWriteIndex(0x0022);
dummy = lld_lcdReadData();
dummy = lld_lcdReadData();
LCD_CS_HIGH;
return dummy;
}
void lld_lcdDrawPixel(uint16_t x, uint16_t y, uint16_t color) {
lld_lcdSetCursor(x, y);
lcdWriteReg(0x0022, color);
}
uint16_t lld_lcdGetOrientation(void) {
return orientation;
}
uint16_t lld_lcdGetHeight(void) {
return lcd_height;
}
uint16_t lld_lcdGetWidth(void) {
return lcd_width;
}
#endif