ugfx/drivers/lcd/s6d1121_lld.c

524 lines
13 KiB
C

#include "ch.h"
#include "hal.h"
#include "s6d1121_lld.h"
#include "chprintf.h"
#ifdef LCD_USE_S6D1121
static uint8_t orientation;
extern uint16_t lcd_width, lcd_height;
/* all interfaces use RST via GPIO */
/* TODO: option to disable RST; assumes RST is tied high */
#define LCD_RST_LOW palClearPad(LCD_RST_GPIO, LCD_RST_PIN)
#define LCD_RST_HIGH palSetPad(LCD_RST_GPIO, LCD_RST_PIN)
#define s6d1121_delay(n) halPolledDelay(MS2RTT(n));
static uint16_t buf[((SCREEN_HEIGHT > SCREEN_WIDTH ) ? SCREEN_HEIGHT : SCREEN_WIDTH)];
#if defined(LCD_USE_GPIO)
#define LCD_CS_LOW palClearPad(LCD_CS_GPIO, LCD_CS_PIN)
#define LCD_CS_HIGH palSetPad(LCD_CS_GPIO, LCD_CS_PIN)
#define LCD_RS_LOW palClearPad(LCD_RS_GPIO, LCD_RS_PIN)
#define LCD_RS_HIGH palSetPad(LCD_RS_GPIO, LCD_RS_PIN)
#define LCD_RD_LOW palClearPad(LCD_RD_GPIO, LCD_RD_PIN)
#define LCD_RD_HIGH palSetPad(LCD_RD_GPIO, LCD_RD_PIN)
#define LCD_WR_LOW palClearPad(LCD_WR_GPIO, LCD_WR_PIN)
#define LCD_WR_HIGH palSetPad(LCD_WR_GPIO, LCD_WR_PIN)
#define LCD_BL_LOW palClearPad(LCD_BL_GPIO, LCD_BL_PIN)
#define LCD_BL_HIGH palSetPad(LCD_BL_GPIO, LCD_BL_PIN)
static inline void lld_lcddelay(void)
{
asm volatile ("nop");
asm volatile ("nop");
}
static inline void lld_lcdwrite(uint16_t db)
{
LCD_D4_GPIO->BSRR.W=((~db&0xFFF0)<<16)|(db&0xFFF0);
LCD_D0_GPIO->BSRR.W=((~db&0x000F)<<16)|(db&0x000F);
LCD_WR_LOW;
lld_lcddelay();
LCD_WR_HIGH;
}
static __inline uint16_t lld_lcdReadData(void) {
uint16_t value=0;
LCD_RS_HIGH;
LCD_WR_HIGH;
LCD_RD_LOW;
#ifndef STM32F4XX
// change pin mode to digital input
LCD_DATA_PORT->CRH = 0x47444444;
LCD_DATA_PORT->CRL = 0x47444444;
#else
#endif
#ifndef STM32F4XX
// change pin mode back to digital output
LCD_DATA_PORT->CRH = 0x33333333;
LCD_DATA_PORT->CRL = 0x33333333;
#else
#endif
LCD_RD_HIGH;
return value;
}
static __inline uint16_t lld_lcdReadReg(uint16_t lcdReg) {
uint16_t lcdRAM;
LCD_CS_LOW;
LCD_RS_LOW;
lld_lcdwrite(lcdReg);
LCD_RS_HIGH;
lcdRAM = lld_lcdReadData();
LCD_CS_HIGH;
return lcdRAM;
}
void lld_lcdWriteIndex(uint16_t lcdReg) {
LCD_RS_LOW;
lld_lcdwrite(lcdReg);
LCD_RS_HIGH;
}
void lld_lcdWriteData(uint16_t lcdData) {
lld_lcdwrite(lcdData);
}
void lld_lcdWriteReg(uint16_t lcdReg, uint16_t lcdRegValue) {
LCD_CS_LOW;
lld_lcdWriteIndex(lcdReg);
lld_lcdWriteData(lcdRegValue);
LCD_CS_HIGH;
}
static __inline void lld_lcdWriteStreamStart(void) {
LCD_CS_LOW;
lld_lcdWriteIndex(0x0022);
}
static __inline void lld_lcdWriteStreamStop(void) {
LCD_CS_HIGH;
}
__inline void lld_lcdWriteStream(uint16_t *buffer, uint16_t size) {
uint16_t i;
for(i = 0; i < size; i++) {
lld_lcdwrite(buffer[i]);
}
}
__inline void lld_lcdReadStreamStart(void) {
/* TODO */
}
__inline void lld_lcdReadStreamStop(void) {
/* TODO */
}
__inline void lld_lcdReadStream(uint16_t *buffer, size_t size) {
/* TODO */
}
#elif defined(LCD_USE_FSMC)
#define LCD_REG (*((volatile uint16_t *) 0x60000000)) /* RS = 0 */
#define LCD_RAM (*((volatile uint16_t *) 0x60020000)) /* RS = 1 */
static __inline void lld_lcdWriteIndex(uint16_t index) {
LCD_REG = index;
}
static __inline void lld_lcdWriteData(uint16_t data) {
LCD_RAM = data;
}
static __inline void lld_lcdWriteReg(uint16_t lcdReg,uint16_t lcdRegValue) {
LCD_REG = lcdReg;
LCD_RAM = lcdRegValue;
}
static __inline uint16_t lld_lcdReadData(void) {
return (LCD_RAM);
}
static __inline uint16_t lld_lcdReadReg(uint16_t lcdReg) {
LCD_REG = lcdReg;
return LCD_RAM;
}
__inline void lld_lcdWriteStreamStart(void) {
LCD_REG = 0x0022;
}
__inline void lld_lcdWriteStreamStop(void) {
}
__inline void lld_lcdWriteStream(uint16_t *buffer, uint16_t size) {
uint16_t i;
for(i = 0; i < size; i++)
LCD_RAM = buffer[i];
}
__inline void lld_lcdReadStreamStart(void) {
LCD_REG = 0x0022;
}
__inline void lld_lcdReadStreamStop(void) {
}
__inline void lld_lcdReadStream(uint16_t *buffer, size_t size) {
uint16_t i;
/* throw away first value read */
volatile uint16_t dummy = LCD_RAM;
for(i = 0; i < size; i++) {
buffer[i] = LCD_RAM;
}
}
#endif
void lld_lcdSetPowerMode(uint8_t powerMode) {
/* TODO: implement */
}
void lld_lcdInit(void) {
palSetPadMode(LCD_RST_GPIO, LCD_RST_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
// A Good idea to reset the module before using
LCD_RST_LOW;
s6d1121_delay(2);
LCD_RST_HIGH; // Hardware Reset
s6d1121_delay(2);
#ifdef LCD_USE_GPIO
// IO Default Configurations
palSetPadMode(LCD_CS_GPIO, LCD_CS_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
palSetPadMode(LCD_WR_GPIO, LCD_WR_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
palSetPadMode(LCD_RD_GPIO, LCD_RD_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
palSetPadMode(LCD_RS_GPIO, LCD_RS_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
palSetPadMode(LCD_BL_GPIO, LCD_BL_PIN, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
palSetGroupMode(LCD_D0_GPIO, 0x0000000F, 0, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
palSetGroupMode(LCD_D4_GPIO, 0x0000FFF0, 0, PAL_MODE_OUTPUT_PUSHPULL | PAL_STM32_OSPEED_HIGHEST);
LCD_CS_HIGH;
LCD_RD_HIGH;
LCD_WR_HIGH;
LCD_BL_LOW;
#elif defined(LCD_USE_FSMC)
#if defined(STM32F1XX)
/* FSMC setup. TODO: this only works for STM32F1 */
rccEnableAHB(RCC_AHBENR_FSMCEN, 0);
/* TODO: pin setup */
#elif defined(STM32F4XX)
/* STM32F4 FSMC init */
rccEnableAHB3(RCC_AHB3ENR_FSMCEN, 0);
/* set pins to FSMC mode */
IOBus busD = {GPIOD, (1 << 0) | (1 << 1) | (1 << 4) | (1 << 5) | (1 << 7) | (1 << 8) |
(1 << 9) | (1 << 10) | (1 << 11) | (1 << 14) | (1 << 15), 0};
IOBus busE = {GPIOE, (1 << 7) | (1 << 8) | (1 << 9) | (1 << 10) | (1 << 11) | (1 << 12) |
(1 << 13) | (1 << 14) | (1 << 15), 0};
palSetBusMode(&busD, PAL_MODE_ALTERNATE(12));
palSetBusMode(&busE, PAL_MODE_ALTERNATE(12));
#else
#error "FSMC not implemented for this device"
#endif
int FSMC_Bank = 0;
/* FSMC timing */
FSMC_Bank1->BTCR[FSMC_Bank+1] = (10) | (10 << 8) | (10 << 16);
/* Bank1 NOR/SRAM control register configuration */
FSMC_Bank1->BTCR[FSMC_Bank] = FSMC_BCR1_MWID_0 | FSMC_BCR1_WREN | FSMC_BCR1_MBKEN;
#endif
lld_lcdWriteReg(0x11,0x2004);
lld_lcdWriteReg(0x13,0xCC00);
lld_lcdWriteReg(0x15,0x2600);
lld_lcdWriteReg(0x14,0x252A);
lld_lcdWriteReg(0x12,0x0033);
lld_lcdWriteReg(0x13,0xCC04);
s6d1121_delay(1);
lld_lcdWriteReg(0x13,0xCC06);
s6d1121_delay(1);
lld_lcdWriteReg(0x13,0xCC4F);
s6d1121_delay(1);
lld_lcdWriteReg(0x13,0x674F);
lld_lcdWriteReg(0x11,0x2003);
s6d1121_delay(1);
// Gamma Setting
lld_lcdWriteReg(0x30,0x2609);
lld_lcdWriteReg(0x31,0x242C);
lld_lcdWriteReg(0x32,0x1F23);
lld_lcdWriteReg(0x33,0x2425);
lld_lcdWriteReg(0x34,0x2226);
lld_lcdWriteReg(0x35,0x2523);
lld_lcdWriteReg(0x36,0x1C1A);
lld_lcdWriteReg(0x37,0x131D);
lld_lcdWriteReg(0x38,0x0B11);
lld_lcdWriteReg(0x39,0x1210);
lld_lcdWriteReg(0x3A,0x1315);
lld_lcdWriteReg(0x3B,0x3619);
lld_lcdWriteReg(0x3C,0x0D00);
lld_lcdWriteReg(0x3D,0x000D);
lld_lcdWriteReg(0x16,0x0007);
lld_lcdWriteReg(0x02,0x0013);
lld_lcdWriteReg(0x03,0x0003);
lld_lcdWriteReg(0x01,0x0127);
s6d1121_delay(1);
lld_lcdWriteReg(0x08,0x0303);
lld_lcdWriteReg(0x0A,0x000B);
lld_lcdWriteReg(0x0B,0x0003);
lld_lcdWriteReg(0x0C,0x0000);
lld_lcdWriteReg(0x41,0x0000);
lld_lcdWriteReg(0x50,0x0000);
lld_lcdWriteReg(0x60,0x0005);
lld_lcdWriteReg(0x70,0x000B);
lld_lcdWriteReg(0x71,0x0000);
lld_lcdWriteReg(0x78,0x0000);
lld_lcdWriteReg(0x7A,0x0000);
lld_lcdWriteReg(0x79,0x0007);
lld_lcdWriteReg(0x07,0x0051);
s6d1121_delay(1);
lld_lcdWriteReg(0x07,0x0053);
lld_lcdWriteReg(0x79,0x0000);
lld_lcdResetWindow();
}
void lld_lcdSetCursor(uint16_t x, uint16_t y) {
/* R20h - 8 bit
* R21h - 9 bit
*/
switch(lcdGetOrientation()) {
case portraitInv:
lld_lcdWriteReg(0x0020, (SCREEN_WIDTH-1-x) & 0x00FF);
lld_lcdWriteReg(0x0021, (SCREEN_HEIGHT-1-y) & 0x01FF);
break;
case portrait:
lld_lcdWriteReg(0x0020, x & 0x00FF);
lld_lcdWriteReg(0x0021, y & 0x01FF);
break;
case landscape:
lld_lcdWriteReg(0x0020, y & 0x00FF);
lld_lcdWriteReg(0x0021, x & 0x01FF);
break;
case landscapeInv:
lld_lcdWriteReg(0x0020, (SCREEN_WIDTH - y - 1) & 0x00FF);
lld_lcdWriteReg(0x0021, (SCREEN_HEIGHT - x - 1) & 0x01FF);
break;
}
}
void lld_lcdFillArea(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, uint16_t color) {
uint32_t index = 0, area;
area = ((x1-x0)*(y1-y0));
lld_lcdSetWindow(x0, y0, x1, y1);
lld_lcdWriteStreamStart();
for(index = 0; index < area; index++)
lld_lcdWriteData(color);
lld_lcdWriteStreamStop();
lld_lcdResetWindow();
}
// Do not use now, will be fixed in future
void lld_lcdSetOrientation(uint8_t newOrientation) {
orientation = newOrientation;
switch(orientation) {
case portrait:
lld_lcdWriteReg(0x0001,0x0127);
lld_lcdWriteReg(0x03, 0b0011);
lcd_height = SCREEN_HEIGHT;
lcd_width = SCREEN_WIDTH;
break;
case landscape:
lld_lcdWriteReg(0x0001,0x0027);
lld_lcdWriteReg(0x0003, 0b1011);
lcd_height = SCREEN_WIDTH;
lcd_width = SCREEN_HEIGHT;
break;
case portraitInv:
lld_lcdWriteReg(0x0001,0x0127);
lld_lcdWriteReg(0x0003, 0b0000);
lcd_height = SCREEN_HEIGHT;
lcd_width = SCREEN_WIDTH;
break;
case landscapeInv:
lld_lcdWriteReg(0x0001,0x0027);
lld_lcdWriteReg(0x0003, 0b1000);
lcd_height = SCREEN_WIDTH;
lcd_width = SCREEN_HEIGHT;
break;
}
}
void lld_lcdResetWindow(void) {
switch(lcdGetOrientation()) {
case portrait:
case portraitInv:
lld_lcdSetWindow(0, 0, SCREEN_WIDTH, SCREEN_HEIGHT);
break;
case landscape:
case landscapeInv:
lld_lcdSetWindow(0, 0, SCREEN_HEIGHT, SCREEN_WIDTH);
break;
}
}
void lld_lcdSetWindow(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1) {
/* HSA / HEA are 8 bit
* VSA / VEA are 9 bit
* use masks 0x00FF and 0x01FF to enforce this
*/
switch(lcdGetOrientation()) {
case portrait:
lld_lcdWriteReg(0x46, (((x1-1) & 0x00FF) << 8) | (x0 & 0x00FF));
lld_lcdWriteReg(0x48, y0 & 0x01FF);
lld_lcdWriteReg(0x47, (y1-1) & 0x01FF);
break;
case landscape:
lld_lcdWriteReg(0x46, (((y1-1) & 0x00FF) << 8) | (y1 & 0x00FF));
lld_lcdWriteReg(0x48, x0 & 0x01FF);
lld_lcdWriteReg(0x47, (x1-1) & 0x01FF);
break;
case portraitInv:
lld_lcdWriteReg(0x46, (((SCREEN_WIDTH-x0-1) & 0x00FF) << 8) | ((SCREEN_WIDTH - x1) & 0x00FF));
lld_lcdWriteReg(0x48, (SCREEN_HEIGHT-y1) & 0x01FF);
lld_lcdWriteReg(0x47, (SCREEN_HEIGHT-y0-1) & 0x01FF);
break;
case landscapeInv:
lld_lcdWriteReg(0x46, (((SCREEN_WIDTH - y0 - 1) & 0x00FF) << 8) | ((SCREEN_WIDTH - y1) & 0x00FF));
lld_lcdWriteReg(0x48, (SCREEN_HEIGHT - x1) & 0x01FF);
lld_lcdWriteReg(0x47, (SCREEN_HEIGHT - x0 - 1) & 0x01FF);
break;
}
lld_lcdSetCursor(x0, y0);
}
void lld_lcdClear(uint16_t color) {
uint32_t index = 0;
lld_lcdSetCursor(0, 0);
lld_lcdWriteStreamStart();
for(index = 0; index < SCREEN_WIDTH * SCREEN_HEIGHT; index++)
lld_lcdWriteData(color);
lld_lcdWriteStreamStop();
}
// Do not use!
uint16_t lld_lcdGetPixelColor(uint16_t x, uint16_t y) {
uint16_t dummy;
lld_lcdSetCursor(x,y);
lld_lcdWriteStreamStart();
dummy = lld_lcdReadData();
dummy = lld_lcdReadData();
lld_lcdWriteStreamStop();
return dummy;
}
void lld_lcdDrawPixel(uint16_t x, uint16_t y, uint16_t color) {
lld_lcdSetCursor(x, y);
lld_lcdWriteReg(0x0022, color);
}
uint16_t lld_lcdGetOrientation(void) {
return orientation;
}
uint16_t lld_lcdGetHeight(void) {
return lcd_height;
}
uint16_t lld_lcdGetWidth(void) {
return lcd_width;
}
/* a positive lines value shifts the screen up, negative down */
/* TODO: test this */
void lld_lcdVerticalScroll(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1, int16_t lines) {
uint16_t row0, row1;
uint16_t i;
for(i = 0; i < ((y1-y0) - abs(lines)); i++) {
if(lines > 0) {
row0 = y0 + i + lines;
row1 = y0 + i;
} else {
row0 = (y1 - i - 1) + lines;
row1 = (y1 - i - 1);
}
/* read row0 into the buffer and then write at row1*/
lld_lcdSetWindow(x0, row0, x1, row0);
lld_lcdReadStreamStart();
lld_lcdReadStream(buf, x1-x0);
lld_lcdReadStreamStop();
lld_lcdSetWindow(x0, row1, x1, row1);
lld_lcdWriteStreamStart();
lld_lcdWriteStream(buf, x1-x0);
lld_lcdWriteStreamStop();
}
lld_lcdResetWindow();
}
#endif